L'insufficienza renale acuta nel paziente critico

Inquadramento clinico dell'IRA nel paziente cardiopatico critico.

La nefropatia da contrasto.

Giancarlo Marenzi, MD

Department of Cardiovascular Sciences
University of Milan

Contrast-Induced Nephropathy

Incidence of CIN is higher following cath lab studies

- Complex procedures
- Larger volumes of contrast
- Contrast going undiluted to renal aa. when injection is made above the emergency of the renal aa.
- Radiologists can choose to perform alternative imaging procedures (MRI, US) in risk patients
- □ Greater awareness in the cardiology setting risk patients are usually followed-up, with measurement of serum creatinine at 24-48 hrs post-contrast

Incidence of CIN following emergency/urgent PCI

- Complex procedures
- Larger volumes of contrast
- Hemodynamic instability
- Impossibility of starting a renal prophylactic therapy
- No time for stratifying the baseline risk of the patient

European Society of Cardiology Guidelines

Incidence of CIN in urgent or emergency angiography for ACS

Risk Factors for Contrast-Induced Nephropathy

Patient Related

- □ Chronic kidney disease (≥stage III)
- Diabetes mellitus (type 1 or 2)
- Volume depletion
- Older age
- Congestive heart failure (or LVEF< 40%)</p>
- Hypertension
- Anemia and blood loss
- Hypoalbuminemia (<35 g/l)
- Nephrotoxic drug use
 - NSAIDs,
 - cyclosporine,
 - amynoglicosides
 - diuretics
 - ACE inhibitors
- Hypotension or hemodynamic instability
- Urgent procedure
- IABP use
- Renal transplant

Not Patient Related

- Contrast properties
 - High osmolar contrast
 - Ionic contrast
 - Contrast viscosity
 - Contrast volume
 - Intra-arterial administration

A Risk Score for Prediction of CIN

Prediction of CIN and Dialysis After PCI

Patients at "Very High Risk" for CIN after PCI

- Patients with multiple risk factors
- Patients with severe chronic renal insufficiency (CrCl<30 ml/min)
- Patients undergoing emergency (primary) PCI
- Patients combining these three characteristics

In-Hospital and 1-Year Mortality in Patients Developing CIN after PCI

Outcomes of Patients Requiring Dialysis Following PCI

Contrast Volume During Primary Percutaneous Coronary Intervention and Subsequent Contrast-Induced Nephropathy and Mortality

561 patients with STEMI who were undergoing primary PCI

CIN Prevention Trials

Agent	Design	Results
Furosemide	Pro-Ran	Worsened CIN
Mannitol	Pro-Ran	Worsened CIN
Hydration (1/2 saline)	Pro-Ran	Benefit vs. furosemide & mannito
Hydration (saline)	Pro-Ran	Benefit vs. 1/2 saline
Atrial natriuretic peptide	Pro-Ran	No benefit
Dopamine	Pro	No benefit
Endothelin antagonist	Pro-Ran	No benefit
Adenosine antagonist	Pro-Ran	No benefit
Calcium channel block.	Pro	No benefit
LOCM-IOCM	Pro-Ran	Benefit vs. HOCM
Fenoldopam	Pro-Ran	No benefit
N-Acetylcysteine	Pro-Ran	Benefit
Ascorbic acid	Pro-Ran	Benefit
NaHCO ₃	Pro-Ran	Benefit
Statins	Pro-Ran	Benefit
Hemodialysis	Pro-Ran	No benefit

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Table 17 Recommendations for prevention of contrast-induced nephropathy

Intervention	Dose	Classa	Levelb	Ref.c
All patients with CKD				
OMT (including statins, ß-blockers, and ACE inhibitors or sartans) is recommended.	According to clinical indications.	1	A	123
Hydration with isotonic saline is recommended.	I mL/kg/h 12 h before and continued for 24 h after the procedure (0.5 mL/kg/h if EF <35% or NYHA >2).	1	A	127–130
N-Acetylcysteine administration may be considered.	600–1200 mg 24 h before and continued for 24 h after the procedure.	IIb	A	128, 129
Infusion of sodium bicarbonate 0.84% may be considered.	I h before: bolus = body weight in kg x 0.462 mEq i.v. infusion for 6 h after the procedure = body weight in kg x 0.154 mEq per hour.	IIb	A	127, 128, 130
Patients with mild, moderate, or severe CKI				
Use of LOCM or IOCM is recommended.	<350 mL or <4 mL/kg	Iq	A ^d	124, 131– 133
Patients with severe CKD				
Prophylactic haemofiltration 6 h before complex PCI should be considered.	Fluid replacement rate 1000 mL/h without weight loss and saline hydration, continued for 24 h after the procedure.	lla	В	134, 135
Elective haemodialysis is not recommended as a preventive measure.		Ш	В	136

Hydration

Marenzi G, Bartorelli A. Pharmacology in the Catheterization Laboratory (Waksman & Ajani eds)

Idratazione o prevenzione della disidratazione?

Il fabbisogno idrico quotidiano di una persona normale, di corporatura media, sana, che si trovi in un ambiente a temperatura ideale, varia da 2,5 a 3 litri di acqua.

1 ml/kg/h per una persona di 70 kg corrisponde a 1.680 litri nelle 24 ore

Prevention of Contrast-Induced Nephropathy With Sodium Bicarbonate

A Randomized Controlled Trial

- 119 pts with sCr >1.1mg/dl undergoing coronary procedures or CT scan.
- 3 ml/kg/h for 1 h before and 1 ml/kg/h for 6h after contrast exposure

Sodium Bicarbonate Versus Saline for the Prevention of Contrast-Induced Nephropathy in Patients With Renal Dysfunction Undergoing Coronary Angiography or Intervention

502 patients with CrCl<60ml/min undergoing PCI, randomized to saline+NAC or bicarbonate+NAC

Sodium bicarbonate for the prevention of contrast-induced nephropathy: a meta-analysis of 17 randomized trials

17 trials (2,448 patients) OR 0.54 (95% CI, 0.36–0.83)

						-			
Citation	EffectName	Year	Bicarbonate	Control	Effect	Lower	Upper	NTotal	
Addad	CIN	2006	10 / 70	13 / 70	.77	.36	1.64	140	
Adolph	CIN	2008	3/71	2/74	1.56	.27	9.08	145	
Brar	CIN	2007	20 / 147	21 / 156	1.01	.57	1.79	303	
Briguori	CIN	2007	2 / 108	11 / 111	.19	.04	.82	219	
Chen	CIN	2007	1 / 55	7 / 50	.13	.02	1.02	105	
Heguilen	CIN	2007	1/9	1/9	1.00	.07	13.64	18	
Hill	CIN	2005	1/8	2/8	.50	.06	4.47	16	
Kim	CIN	2007	10 / 56	8/44	.98	.42	2.28	100	
Lin	CIN	2007	4/21	6/24	.76	.25	2.34	45	
Maioli	CIN	2008	25 / 252	29 / 250	.86	.52	1.42	502	
Masuda	CIN	2007	2/30	10 / 29	.19	.05	.81	59	
Merten	CIN	2004	1 / 60	8 / 59	.12	.02	.95	119	
Mora	CIN	2007	1 / 86	21 / 88	.05	.01	.35	174	
Ozcan	CIN	2007	4 / 88	12 / 88	.33	.11	.99	176	
Recio-Mayoral	CIN	2007	1 / 56	12 / 55	.08	.01	.61	111	
Saidin	CIN	2006	9/29	4/28	2.17	.75	6.25	57	
Shaikh	CIN	2007	6/79	11 / 80	.55	.21	1.42	159	
Combined (17)			101 / 1225	178 / 1223	.54	.36	.83	2448	

Random

Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis

17 trials (2,633 patients) OR 0.52 (95% CI, 0.34–0.80; P=0.003)

	Study	Statis	Statistics for each study		CIN /	CIN / Total		Odds ratio and 95% CI			
		OR	95% CI	p-Value	NaHC03	NS					
Elective	Merten	0.11	0.01 0.89	0.039	1/60	8 / 59	1	+	— T	Ĩ	
procedures	REMEDIAL	0.17	0.04 0.79	0.024	2 / 108	11 / 111	_		_		
	Ozcan	0.30	0.09 0.97	0.045	4/88	12/88		-	_		
	Shaikh	0.72	0.35 1.49	0.380	14 / 159	19 / 161		-			
	Brar	0.90	0.48 1.69	0.745	21 / 158	24 / 165			-		
	Maioli	0.85	0.49 1.50	0.586	25 / 250	29 / 252			4		
	Tamura	0.10	0.01 0.80	0.030	1/72	9/72		+	- 7		
	Kim	0.98	0.35 2.73	0.967	10 / 56	8/44		0.	——		
	Lin	0.56	0.14 2.28	0.414	4 / 40	5/30		_	•—		
	Heguilen	1.00	0.0518.91	1.000	1/9	1/9	- 1	_	→	-	
	REINFORCE	1.59	0.26 9.80	0.618	3/71	2/74				_	
Summary el	ective procedures	0.63	0.43 0.92	0.017					\Diamond		
Emergency	RENO	0.07	0.01 0.52	0.010	1/56	12 / 55	(-		
procedures	Masuda	0.14	0.03 0.69	0.016	2/30	10 / 29			_		
Summary er	nergency procedures	0.10	0.03 0.39	0.001				\Rightarrow			
					_		0.01	0.1	1	10	10
							Favours I	NaHCO3		Favo	urs N

Effects of Hydration in Contrast-Induced Acute Kidney Injury After Primary Angioplasty

A Randomized, Controlled Trial

	Control Group (n=150)	Late Hydration Group (n=150)	Early Hydration Group (n=150)	P Value for Trend
Primary and secondary end points				
Serum creatinine increase by ≥ 0.5 mg/dL and/ or by $\geq 25\%$ within 72 h, n (%)	41 (27.3)*	34 (22.7)†	(18 (12.0)*†)	0.001

Control group: no hydration

Late hydration group: isotonic saline (1 ml/kg/h) for 12 hours after PCI

Early hydration group: a bolus of 3 ml/kg of sodium bicarbonate solution solution in 1 hour, starting in the emergency room, followed by infusion of 1 ml/kg/hr for 12 hours after PCI.

PREVENTION OF RADIOGRAPHIC-CONTRAST-AGENT-INDUCED REDUCTIONS IN RENAL FUNCTION BY ACETYLCYSTEINE

Antioxidant agent that improves renal hemodynamics and may prevent direct oxidative tissue damage

- Prospective randomized trial
- 83 high-risk patients:
 - □ CrCl <50 ml/min
 - □ Diabetes 33%
 - IV contrast for CT (75 ml of low-osmolar CM)
 - □ NAC 600 mg bid x 2 days
 - □ Hydration with 0.45% 1 ml/kg/h x 24 h
 - □ CIN definition: sCr >0.5 mg/dl

Meta-analyses of NAC for CIN Prevention Trials

Source	Procedure	Type of Study	No. of Trials	No. of Patients	Heterogeneity (p value)	Pooled Estimate (95% CI)	Author Conclusions
Birk et al	CT or angiography	Α	7	805	Present (p=.02)	RR, 0.44 (0.22-0.88	Beneficial
lsenbarger et al.	CT or angiography	Α	7	805	Present (p=.01)	OR, 0.37 (0.16-0.84)	Beneficial
Alonso et al.	CT or angiography	A, B	8	805	Not reported	RR, 0.41 (0.22-0.79)	Beneficial
Kshirsager et al.	CT or angiography	A, B	16	1538	Present (p<.001)	Not reported	Inconclusive
Pannu et al.	CT or angiography	A, B, D	15	1776	Present (p=.02)	RR, 0.65 (0.43-1.0)	Inconclusive
Guru and Fremes	CT or angiography	A, C	11	1213	Present (p=.01)	OR, 0.46 (0.32-0.66)	Beneficial
Bagshaw and Ghail	Angiography	Α	14	1261	Present (p=.03)	OR, 0.54 (0.32-0.91)	Inconclusive
Misra et al.	Angiography	Α	5	643	Present (p=.05)	RR, 0.30 (0.11-0.82)	Beneficial
Nallamothu et al.	CT or angiography	A, D	20	2195	Present (p=.01)	RR, 0.73 (0.52-1.0)	Inconclusive
₋iu et al.	CT or angiography	A, B	9	1028	Present (p=.03)	RR, 0.43 (0.24-0.75)	Beneficial
Duong et al.	CT or angiography	A, C	14	1584	Present (p=.01)	RR, 0.57 (0.37-0.84)	<u>Beneficial</u>

A= RCT (articles), B= RCT (abstracts), C= NRT (articles), D= unpublished

NAC for CIN Prevention

- Disparate conclusions, with 7 meta-analyses finding a beneficial effect and 4 demonstrating inconclusive results
- This may partially reflect differences in:
 - Patient population,
 - renal dysfunction severity,
 - number of additional risk factors,
 - clinical setting,
 - Type of invasive procedure,
 - hydration protocols,
 - type and volume of contrast agent,
 - definition of CIN,
 - wide range of oral or i.v. dosage of NAC.

High-dose N-acetylcysteine for the Prevention of Contrast-induced Nephropathy

Hariprasad Trivedi, MD,^a Sumanth Daram, MD,^b Aniko Szabo, PhD,^c Antonio L. Bartorelli, MD,^d Giancarlo Marenzi, MD^d

OR of 0.46 (95% CI: 0.33 0.63, P<0.0001) for the occurrence of CIN with the use of high-dose NAC (daily dose greater than 1200 mg or single peri-procedural dose within 4 hours of contrast exposure greater than 600 mg)

Incidence of CIN

■ 16 studies, 1677 pts

- Most patients with CKD
- □ High-dose NAC in 842 pts
- Control arm: 835 pts

Alnoidence of CIN

Favors treatment

Favors control

The Reno-Protective Effect of Hydration With Sodium Bicarbonate Plus N-Acetylcysteine in Patients Undergoing Emergency Percutaneous Coronary Intervention

The RENO Study

- □ 111 ACS pts
- □ Group A (n=56)
 received infusion of sodium
 bicarbonate plus NAC started just
 before CM injection and continued
 for 12h after PCI
- □ Group B (n=55) received isotonic saline for 12h after PCI
- □ In both groups, oral NAC was given after PCI

Incidence of Contrast-Induced Nephropathy Based on the Criteria Used in RENO

Sodium Bicarbonate Plus N-Acetylcysteine Prophylaxis

A Meta-Analysis

Contrast-induced nephropathy

Prediction of CIN and Dialysis After PCI

Hazard Ratios for Mortality as a Function of Renal Function in Patients Treated Medically or with PCI (Registry data over a 5-year period)

Rationale for Renal Replacement Therapies (RRT) in CIN Prevention

Contrast media are mainly excreted by glomerular filtration.

Effective contrast removal by the artificial membranes used with RRTs, through a process similar to spontaneous glomerular filtration, has been demonstrated in renal failure patients (Schindler R, et al. Nephrol Dial Transplant 2001;16:1471)

Renal Replacement Therapy for Prevention of Contrast-Induced Acute Kidney Injury: A Meta-Analysis of Randomized Controlled Trials

Effect of baseline CKD stage on CIN

Renal Replacement Therapy for Prevention of Contrast-Induced Acute Kidney Injury: A Meta-Analysis of Randomized Controlled Trials

Effect of modality of RRT on CIN

Renal replacement therapies for prevention of radiocontrast-induced nephropathy. A systematic review.

Risk for acute RRT: Renal Replacement Therapy vs Standard Medical Therapy, by RRT modality

	RRT		SMT		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	M-H, Random, 95% CI	M-H, Random, 95% Cl		
8.3.1 HF-HDF								
Gabutti 2003	1	26	0	25	2.89 [0.12, 67.75]	-		
Marenzi 2003	2	58	14	56	0.14 [0.03, 0.58]			
Marenzi 2006	3	62	9	30	0.16 [0.05, 0.55]			
Subtotal (95% CI)		146		111	0.22 [0.06, 0.74]			
Total events	6		23					
Heterogeneity: Tau² =	= 0.42; Chi	r = 3.13	3, df = 2 (P = 0.2	1); I² = 36%			
Test for overall effect:	Z = 2.45 (P = 0.0)1)					
0 3 3 IUD								
8.3.2 IHD	4	40	4.4	40	0.07/0.04 0.401			
PT Lee 2007	1	42	14	40	0.07 [0.01, 0.49]			
Reinecke 2007	2	135	2	277	2.05 [0.29, 14.41]			
Vogt 2001	8	55	3	58 275	2.81 [0.79, 10.06]			
Subtotal (95% CI)		232	4.0	375	0.78 [0.07, 8.43]			
Total events	11		19					
Heterogeneity: Tau ² =				(P=0.	003); I*= 83%			
Test for overall effect:	Z = 0.20 (P = 0.8	34)					
						0.01 0.1 1 10 100		
						Favours RRT Favours SMT		

The Prevention of Radiocontrast-Agent– Induced Nephropathy by Hemofiltration

114 pts with CKD (creatinine > 2.0 mg/dl) scheduled for elective angiographic procedures

Control Group (n=56)

Hemofiltration* group (n=58)

*1000 ml/h without weight loss

Hemofiltration to Prevent CIN

Incidence of CIN

The Prevention of Radiocontrast-Agent– Induced Nephropathy by Hemofiltration

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Table 17 Recommendations for prevention of contrast-induced nephropathy

Intervention	Dose	Classa	Levelb	Ref.c
All patients with CKD				
OMT (including statins, ß-blockers, and ACE inhibitors or sartans) is recommended.	According to clinical indications.	1	А	123
Hydration with isotonic saline is recommended.	I mL/kg/h I 2 h before and continued for 24 h after the procedure (0.5 mL/kg/h if EF <35% or NYHA >2).	1	A	127–130
N-Acetylcysteine administration may be considered.	600–1200 mg 24 h before and continued for 24 h after the procedure.	IIb	A	128, 129
Infusion of sodium bicarbonate 0.84% may be considered.	I h before: bolus = body weight in kg x 0.462 mEq i.v. infusion for 6 h after the procedure = body weight in kg x 0.154 mEq per hour.	IIb	А	127, 128, 130
Patients with mild, moderate, or severe CKI)			
Use of LOCM or IOCM is recommended.	<350 mL or <4 mL/kg	Iq	A ^d	124, 131– 133
Patients with severe CKD				
Prophylactic haemofiltration 6 h before complex PCI should be considered.	Fluid replacement rate 1000 mL/h without weight loss and saline hydration, continued for 24 h after the procedure.	lla	В	134, 135
Elective haemodialysis is not recommended as a preventive measure.		Ш	В	136

Furosemide and Matched Hydration

- Furosemide administration may have some positive effects when associated with hydration.
 - It enhances contrast dilution in the renal tubule through increased urine flow.
 - it blocks tubular sodium reabsorption in the medulla and, as a consequence, reduces tubular workload and concomitant oxygen requirement at a time when contrast is expected to decrease medullary oxygen delivery.
 - it may reduce renal vascular resistance, increasing renal blood flow
 - it prevents fluid overload, reducing the risk of heart failure.
- On the other hand, these positive actions may be thwarted by furosemide-induced reduction of the effective circulating volume
- Indeed, previous clinical studies demonstrated that the net effect of prophylactic furosemide seems to be an increased CIN rate.

The RenalGuard System

RenalGuard therapy is designed to:

 Automatically match i.v. fluid replacement to urine volume in real-time during furosemide-induced forced diuresis

This treatment may:

- Reduce the risk of over- or under-hydration
- Dilute contrast agent in the renal tubules
- Limit kidneys exposure to contrast agent

Continuous infusion of isotonic saline solution matched with urine output

Post-procedural complications.

	FMH group (n=87)	Control group (n=83)	P value
CIN requiring RRT, n (%)	1 (1.1%)	3 (4%)	0.29*
Acute myocardial infarction, n (%)	0 (0%)	1 (1.2%)	0.30*
AF/VT, n (%)	1 (1.1%)	2 (2.4%)	0.53*
Emergency CABG, n (%)	0 (0%)	0 (0%)	-
Acute pulmonary edema, n (%)	5 (6%)	10 (12%)	0.15*
Hypotension/shock, n (%)	0 (0%)	0 (0%)	-
In-hospital death, n (%)	1 (1.1%)	3 (4%)	0.29*
Patients with >2 events, n (%)	1 (1.1%)	3 (4%)	0.29*
All clinical events (per protocol), n (%)	7 (8%)	15 (18%)	0.052
All clinical events (intention to treat), n (%)	7 (8%)	17 (20%)	0.02

AF = atrial fibrillation; CABG = coronary artery bypass graft surgery; CIN = contrast-induced nephropathy; FMH = furosemide-induced diuresis with matched hydration; RRT = renal replacement therapy, VT = ventricular tachycardia.

^{*}By Fisher exact test.

Furosemide and Matched Hydration

- Furosemide administration may have some positive effects when associated with hydration.
 - □ It enhances contrast dilution in the renal tubule through increased urine flow.
 - it blocks tubular sodium reabsorption in the medulla and, as a consequence, reduces tubular workload and concomitant oxygen requirement at a time when contrast is expected to decrease medullary oxygen delivery.
 - it may reduce renal vascular resistance, increasing renal blood flow
 - it prevents fluid overload, reducing the risk of heart failure.
- On the other hand, these positive actions may be thwarted by furosemide-induced reduction of the effective circulating volume
- □ Indeed, previous clinical studies demonstrated that the net effect of prophylactic furosemide seems to be an increased CIN rate.
- Matched hydration allows for a high-volume (800 mL/hour as a average) controlled hydration.

Cumulative i.v. saline hydration volume during the treatment period

A new concept is emerging for CIN prevention

- The hydration volume should be commensurate to the patient's risk
- A high volume (~1 L/hr) of controlled hydration is likely required in highrisk patients
- This goal can be achieved by:
 - Exactly matching fluid removal to i.v. hydration to prevent fluid overload (Hemofiltration)
 - Exactly matching i.v. hydration to urine output to avoid hypovolemia (RenalGuard)

Conclusions

- CIN represents a frequent complication of PCI, associated with increased morbidity and mortality.
- Patients with severe renal insufficiency, multiple risk factors, and those undergoing emergency/urgent PCI, have a "very high risk" of CIN
- Prophylactic measures should be routinely taken to avoid CIN in all patients
- New strategies should be developed in very high-risk patients, in order to prevent CIN and to reduce associated morbidity and mortality.

