

VI CONGRESSO NAZIONALE DI ECOCARDIOCHIRURGIA MILANO 15-17 OTTOBRE 2012

## La rottura istmica dell'aorta: molte cose sono cambiate nel trattamento di questa patologia.

## Davide Pacini, MD





## **Traumatic aortic rupture**

Andrea Vesalius, 1557





Incidence of TAR in autopsies for accidental death



1947 (Strassman G): 0.7% 1997 (Eddy CA):10 % 2002 (Richens D): 22%



## 8000 deaths/year (USA)



## Cause of death in Trauma







# **Definition: acute traumatic aortic rupture (ATAR)**

- traumatic injury of the aortic wall
- aortic transection or disruption

with dilatation

frequently cause life-threatening

bleeding complications

Injury to intima and media with intact adventitia and formation of pseudoaneurysm



Macura et al. Am. J. Roentgenol. 2003





## What types of accidents cause ATAR?

car crahes >50 km/h into fixed barrier

(no seat belt, steering-wheel injury)

- ejections from vehicle
- motorcycle crashes
- pedestrian hits by motor vehicle
- falls > 3 meters
- airplane crashes







## **Theories of blunt aortic injury**



#### combination of forces:

stretching, shearing, torsion "waterhammer" effect (simultaneous occlusion of the aorta and a sudden elevation in blood pressure) "osseous pinch" effect (entrapment of the aorta between the anterior chest wall and the vertebral column)



## **Incidence and localisation of ATAR**



#### surgical series:

- 84 to 97% at the isthmus
- 3 to 10% in the ascending, arch

#### or distal descending aorta.

Razzouk AJ et al. Arch Surg 2000;135:913. Fabian TC et al. J Trauma 1997;42:374. Sweeney MS et al. Ann Thorac Surg 1997;64:384. Hilgenberg AD et al. Ann Thorac Surg 1992;53:233. Kirsh MM et al. Ann Surg 1976;184:308. von Oppell UO et al. Ann Thorac Surg 1994;58:585. Kieny R, Charpentier A. J Cardiovasc Surg (Torino) 1991;32:613. Cowley RA et al. J Thorac Cardiovasc Surg 1990;100:652.





## **Incidence and localisation of ATAR**



www.umdnj.edu/research/publications/fall04/12\_motor\_vehicle.htm

#### autopsy series:

- 36 to 54% occur at the aortic isthmus
- 8 to 27% involve the ascending aorta
- 8 to 18% occur in the arch
- 11 to 21% involve the distal

#### descending aorta

Feczko JD et al. J Trauma 1992;33:846. Parmley L et al. Circulation 1958;17:1086. Arajarvi E et al. J Thorac Cardiovasc Surg 1989;98:355. Rabinsky I et al. Ann Thorac Surg 1990;50:155.





## **Type of lesion**









#### Saccular aneurysm





#### Circumferential rupture









## **Traumatic aortic rupture: natural history**





## Immediate Surgery

**Parmley LF, Mattingly TW, Marian WC. Non-penetrating traumatic injury of the aorta** *Circulation 1958;17:1086-1100* 





## **Immediate Surgery**

## Mortality

| Year | Author     | Mortality<br>(%) | N. patients |
|------|------------|------------------|-------------|
| 1977 | Kirsch     | 25               | 43          |
| 1981 | Akins      | 22               | 44          |
| 1981 | Katz       | 25               | 35          |
| 1985 | Pate       | 13               | 59          |
| 1985 | Mattox     | 36               | 32          |
| 1989 | Cowley     | 42               | 58          |
| 1990 | Del Rossi  | 33               | 27          |
| 1992 | Pierangeli | 19               | 15          |
| 1996 | Hunt       | 32               | 118         |







## **Open surgery**







| Authors       | Year | Patients (N) | Mortality N (%) | Paraplegia N (%) |
|---------------|------|--------------|-----------------|------------------|
| Clamp/sew     |      |              |                 |                  |
| Von Oppell*   | 1994 | 443          | 71 (16%)        | 85 (19.2%)       |
| Fabian        | 1997 | 73           | 11 (15.1%)      | 12 (16.4%)       |
| Razzouk       | 2000 | 83           | 15 (18.1%)      | 5 (6%)           |
| Jahromi*      | 2001 | 220          | 33 (15%)        | 14/194 (7%)      |
| Passive shunt |      |              |                 |                  |
| Von Oppell*   | 1994 | 424          | 52 (12.3%)      | 47 (11.1%)       |
| Fabian        | 1997 | 4            | 0               | 0                |
| Jahromi*      | 2001 | 52           | 4 (8%)          | 2/48 (4%)        |
| Left bypass   |      |              |                 |                  |
| Von Oppell*   | 1994 | 71           | 7 (9.9%)        | 1 (1.7%)         |
| Fabian        | 1997 | 69           | 10 (14.5%)      | 2 (2.9%)         |
| Jahromi*      | 2001 | 100          | 17 (17%)        | 0                |
| СРВ           |      |              |                 |                  |
| Von Oppell*   | 1994 | 490          | 89 (18.2%)      | 12 (2.4%)        |
| Fabian        | 1997 | 39           | 5 (12.8%)       | 3 (7.7%)         |
| Jahromi*      | 2001 | 246          | 23 (9.3%)       | 5/227 (2.2%)     |
| Downing       | 2000 | 50           | 5 (10%)         | 0                |
| Jamieson      | 2002 | 35           | 5 (14.3%)       | 0                |
| Langanay      | 2002 | 48           | 9 (18.8%)       | 1 (2%)           |

Open surgery



## Associated injuries

|                      | 1975-1990 |           | 2000      | -2005     |
|----------------------|-----------|-----------|-----------|-----------|
|                      | n (%)     | Mortality | n (%)     | Mortality |
| Open cardiac injury  | 11 (11)   | 11 (100)  | 0         |           |
| Blunt cardiac injury | 19 (18)   | 14 (74)   | 12 (22.6) | 6 (50)    |
| Great vessel injury  | 6(6)      | 5 (83)    | 0         |           |
| Carotid dissection   | 0         |           | 2         | 0         |
| Closed head injury   | 52 (50)   | 35 (67)   | 27 (50.9) | 12(45)    |
| Spine injury         | 15 (14)   | 11 (73)   | 16 (30.2) | 5 (32)    |
| Pulmonary injury     | 55 (53)   | 30 (55)   | 26 (49.6) | 11 (42)   |
| Abdominal injury     | 59 (57)   | 46 (78)   | 24 (45.3) | 5 (21)    |
| Pelvic fracture      | 25 (24)   | 16 (64)   | 24 (45.3) | 7 (29)    |
| Long bone fracture   | 53 (51)   | 30 (57)   | 27 (50.9) | 6 (22)    |



Cardiac Surgery Department - University of Bologna - Italy Cook J. JTCVS 2006 dav.pacini@gmail.com



## **DELAYED CRITERIA**

- Central nervous system severe trauma
- Severe respiratory insufficiency
- Extended Body-burns
- Contaminated open-wounds
- Sepsis

#### Akins. Annals 1981

#### Pierangeli 1992

#### •ICU

- •Life-parameters monitoring
- •Mechanical ventilation
- Arterial hypertension controlSurgical treatment of the associate lesions





## **STORIA NATURALE DEI SOPRAVVISSUTI**

(492 pts, clinical series)

#### Mortality due to aortic rupture: 4.5%

**Intimal lesion** 







# Surgical Indications and Timing of Repair of Traumatic Ruptures of the Thoracic Aorta

Roberto Galli, MD, Davide Pacini, MD, Roberto Di Bartolomeo, MD, Rossella Fattori, MD, Bruno Turinetto, MD, Giovanni Grillone, MD, and Angelo Pierangeli, MD

Departments of Cardiac Surgery and Radiology and Intensive Care Unit, University of Bologna, Bologna, Italy

| <b>42</b> natients             | Characteristics                    | Group I    | Group II  |
|--------------------------------|------------------------------------|------------|-----------|
| 12 patients                    | Hospital deaths (3 intraoperative) | 4 (19%)    | 0(0%)     |
| Crown I (Immediate Surgery).   | Complications                      |            |           |
| Group I (Innitediate Surgery): | Paraplegia                         | 3          |           |
| <b>21 pts</b>                  | Paraparesis                        | 1          |           |
|                                | Acute renal failure                | 1          |           |
| Croup II (Dolovod Surgery).    | Coma                               | 1          |           |
| Group II (Delayeu Surgery).    | Bleeding                           | 1          |           |
| <b>21 pts</b>                  | Laryngeal nerve lesion             | 3          | 1         |
|                                | Chylothorax                        |            | 1         |
|                                | Pericarditis                       |            | 1         |
|                                | Total                              | 10 (47.6%) | 3 (27.3%) |

Table 2. Mortality and Morbidity

Ann Thorac Surg 1998;65:461-4





# Surgical Indications and Timing of Repair of Traumatic Ruptures of the Thoracic Aorta

Roberto Galli, MD, Davide Pacini, MD, Roberto Di Bartolomeo, MD, Rossella Fattori, MD, Bruno Turinetto, MD, Giovanni Grillone, MD, and Angelo Pierangeli, MD

Departments of Cardiac Surgery and Radiology and Intensive Care Unit, University of Bologna, Bologna, Italy

Background. The outcome of patients with acute traumatic rupture of the thoracic aorta after motor vehicle accidents is strongly conditioned by injuries to other districts. The timing of repair is controversial when the patients arrive alive to the hospital.

Methods. A series of 42 patients with acute traumatic rupture of the thoracic aorta observed between January 1980 and June 1996 was divided into two groups: group I underwent immediate repair (21 patients) and in group II operation was performed after intensive medical treatment and management of the associated lesions and monitoring of the aortic tear.

Results. The mortality in group I patients was 19% and

the morbidity was more significant than in group II where no deaths were reported and complications were minor.

Conclusions. Patients with acute traumatic rupture of the thoracic aorta may have a better fighting chance if aortic operation is postponed to the most favorable moment after undergoing life-sustaining measures and management of the major associated lesions. Needless to say, evolution should be closely monitored by computed tomographic scans and magnetic resonance imaging.

> (Ann Thorac Surg 1998;65:461-4) © 1998 by The Society of Thoracic Surgeons







## **DELAYED SURGICAL TREATMENT**

The Journal of TRAUMA® Injury, Infection, and Critical Care

#### Blunt Traumatic Thoracic Aortic Injuries: Early or Delayed Repair—Results of an American Association for the Surgery of Trauma Prospective Study

Demetrios Demetriades, MD, George C. Velmahos, MD, Thomas M. Scalea, MD, Gregory J. Jurkovich, MD, Riyad Karmy-Jones, MD, Pedro G. Teixeira, MD, Mark R. Hemmila, MD, James V. O'Connor, MD, Mark O. McKenney, MD, Forrest O. Moore, MD, Jason London, MD, Michael J. Singh, MD, Konstantinos Spaniolas, MD, Marius Keel, MD, Michael Sugrue, MD, Wendy L. Wahl, MD, Jonathan Hill, MD, Mathew J. Wall, MD, Ernest E. Moore, MD, Edward Lineen, MD, Daniel Margulies, MD, Valerie Malka, MD, and Linda S. Chan, PhD

| MORTALITY      | RATE  |
|----------------|-------|
| EARLY REPAIR   | 16.5% |
| DELAYED REPAIR | 5.8%  |

The Journal of **TRAUMA**<sup>®</sup> Injury, Infection, and Critical Care

2008

|                                             | All Patients (n = 178),<br>% (n) | Early Repair (n = 109),<br>% (n) | Delayed Repair (n = 69)<br>% (n) | Odds Ratio (95% CI)      | p     |
|---------------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------|-------|
| Deaths                                      | 12.4 (22)                        | 16.5 (18)                        | 5.8 (4)                          | 3.21 (1.04-9.94)         | 0.034 |
| Any systemic complications<br>Complications | 43.8 (78)                        | 41.5 (45)                        | 47.6 (33)                        | 1.30 (0.71-2.39)         | 0.391 |
| Procedure-related<br>paraplegia             | 1.7 (3)                          | 1.8 (2)                          | 1.4 (1)                          | 1.27 (0.11–14.29)        | 1.000 |
| Pneumonia                                   | 32.0 (57)                        | 32.1 (35)                        | 31.9 (22)                        | 1.01 (0.53-1.93)         | 0.975 |
| ARDS                                        | 13.5(24)                         | 11.9 (13)                        | 15.9 (11)                        | 0.71 (0.30-1.70)         | 0.445 |
| Septicemia                                  | 14.0 (25)                        | 13.8 (15)                        | 14.5 (10)                        | 0.94 (0.40-2.23)         | 0.891 |
| UTI                                         | 16.9 (30)                        | 14.7 (16)                        | 20.3 (14)                        | 0.68 (0.31-1.49)         | 0.330 |
| DVT                                         | 2.2 (4)                          | 1.8 (2)                          | 2.9 (2)                          | 0.63 (0.09-4.55)         | 0.642 |
| Renal failure                               | 9.0 (16)                         | 10.1 (11)                        | 7.2 (5)                          | 1.44 (0.48-4.33)         | 0.518 |
|                                             | Mean ± SD (median)               | Mean ± SD (median)               | Mean ± SD (median)               | Mean Difference (95% CI) | p     |
| Ventilation days                            | 9.2 ± 11.3 (5)                   | 8.7 ± 10.4 (5)                   | 10.0 ± 12.6 (7)                  | -1.21 (-4.69 to 2.27)    | 0.293 |
| ICU days                                    | 13.3 ± 12.1 (9)                  | 12.3 ± 11.8 (7)                  | 14.9 ± 12.5 (12)                 | -2.58 (-6.28 to 1.11)    | 0.016 |
| Hospital days                               | 23.4 ± 33.2 (19)                 | 19.9 ± 16.6 (15)                 | 28.8 ± 48.4 (22)                 | -8.91 (-19.07 to 1.26)   | 0.007 |
| Blood transfusion units                     | 10.8 ± 17.2 (6)                  | 9.8 ± 15.8 (6)                   | 12.4 ± 19.6 (6)                  | -2.58 (-8.04 to 2.89)    | 0.736 |





### SIGNS OF IMPENDING RUPTURE (Pate W, World J Surg 1995)

- Uncontrolled blood pressure
- Repeated hemothorax > 800 cc
- Contrast medium extravasation on CT scan
- Circumferential/irregular lesion (+/- Pseudocoartaction)





### SIGNS OF IMPENDING RUPTURE (Pate W, World J Surg 1995)

- Uncontrolled blood pressure
- Repeated hemothorax > 800 cc
- Contrast medium extravasation on CT scan
- Circumferential/irregular lesion (+/- Pseudocoartaction)









### SIGNS OF IMPENDING RUPTURE (Pate W, World J Surg 1995)

- Uncontrolled blood pressure
- Repeated hemothorax > 800 cc
- Contrast medium extravasation on CT scan
- Circumferential/irregular lesion (+/- Pseudocoartaction)









#### Traumatic rupture of the thoracic aorta: Ten years of delayed management

Davide Pacini, MD<sup>a</sup> Emanuela Angeli, MD<sup>a</sup> Rossella Fattori, MD<sup>b</sup> Luigi Lovato, MD<sup>b</sup> Guido Rocchi, MD<sup>c</sup> Luca Di Marco, MD<sup>a</sup> Marcello Bergonzini, MD<sup>a</sup> Giovanni Grillone, MD<sup>d</sup> Roberto Di Bartolomeo, MD<sup>a</sup>



Grillone, Di Bartolomeo, Pacini (left to right)

**Objective:** Traumatic rupture of the thoracic aorta is a highly fatal condition in which patient outcome is strongly conditioned by other associated injuries. Delayed aortic treatment has been proposed to improve results.

**Methods:** The charts of 69 patients with traumatic rupture of the thoracic aorta observed between 1980 and 2003 were reviewed. Patients were grouped according the timing of repair: group I, immediate repair (21 patients); and group II, delayed repair (48 patients). In group II, 45 patients were treated surgically or by endovascular procedure.

**Results:** In-hospital mortalities were 4 of 21 patients (19%) in group I and 2 of 48 patients (4.2%) in group II. There were 3 cases of paraplegia in group I and none in group II.

#### GROUP II DELAYED REPAIR 5/48 (10.4%) patients underwent emergent treatment

J Thorac Cardiovasc Surg 2005;129:880-4







#### Bursting the deadly danger of aortic aneurysms



When a doctor found the theoli in Kodrick James' gut, the 68grandfather knew he was in danger faults. 'R was a publishing mass," the 0 Okla, man says. "Every time the 1

The acetic anearysm — a wrake wall of the body's largest blood ve bidging with each best of his heart Left unrensted, the growing his likely barst without warning.

massive blocking, followed by shock of certain dead. As better way, Vascular surgeon Jan Metars, rept, and oacdai something 1 dead's result has dear an active same they repair an sortic areacyses. The dearshow's

um he deadly. But a new procedure is offering hope for the 200,000 people a year who learn they have the defect. As he weighed having his answrysm remained haves amentime, completed a forest



## Thoracic aortic disease: endovascular repair

#### •Reliable and effective

Stanford 1992 "Home-made" self expanding Z-stent-graft

## •Lower morbility and mortality than open surgical repair

#### Table 2. Early postoperative outcomes

|                                                               | Endovascular group | Open surgical group | <i>P</i> value |
|---------------------------------------------------------------|--------------------|---------------------|----------------|
| Mortality: 30 d or in hospital                                | 2.1% (n = 3)       | 11.7% (n = 11)      | .004           |
| Respiratory failure*                                          | 4%                 | 20%                 | <.001          |
| Postoperative MI                                              | 0%                 | 1%                  | .40            |
| Renal failuret                                                | 1%                 | 13%                 | .01            |
| Wound infection/dehiscence                                    | 4%                 | 11%                 | .07            |
| GI complication (ileus, bowel ischemia, or bowel obstruction) | 2%                 | 6%                  | .16            |
| Peripheral vascular complications‡                            | 14%                | 4%                  | .015           |
| Neurologic complications                                      |                    |                     |                |
| CVA                                                           | 4% (n = 5)         | 4% (n = 4)          | 1.00           |
| Paraplegia/paraparesis                                        | 3% (n = 4)         | 14% (n = 13)        | .003           |
| Mean ICU length of stay (d)                                   | $2.6 \pm 14.6$     | $5.2 \pm 7.2$       | <.001          |
| Mean length of hospital stay (d)                              | $7.4 \pm 17.7$     | $14.4 \pm 12.8$     | <.001          |

Bavaria JA, J Thorac Cardiovasc Surg 2006

Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com



Melbourne 1996 Talent Thoracic nitinol/polyester stent-graft



## **Traumatic aortic rupture: diagnosis**









The advent of thoracic endovascular aortic repair is associated with broadened treatment eligibility and decreased overall mortality in traumatic thoracic aortic injury Michael S. Hong, MD, Robert J. Feezor, MD, W. Anthony Lee, MD, and Peter R. Nelson, MD, MS, *Gainesville, Fla* 



#### Proportion of patients receiving intervention by year







## **TEVAR** in traumatic aortic rupture

Significant reduction in morbidity and mortality (~0)

No paraplegia (short SG segment)

Xenos ES, J Vasc Surg 2008



|                     |       | Patients, No. | (%)            | Procedur<br>mortality | e-related<br>, No. (%) | 30-day mor<br>(% | rtality, No.<br>%) | Paraplegi<br>No. | a/paresis,<br>(%) |
|---------------------|-------|---------------|----------------|-----------------------|------------------------|------------------|--------------------|------------------|-------------------|
| First author (year) | Total | TEVAR         | Open           | TEVAR                 | Open                   | TEVAR            | Open               | TEVAR            | Open              |
| Amabile (2004)      | 12    | 3 (25)        | 9 (75)         | 0(0)                  | 1(11)                  | 0(0)             | 1(11)              | 0(0)             | 0(0)              |
| Andrassy (2006)     | 31    | 15 (48)       | 16 (52)        | 1(7)                  | 2 (13)                 | 2 (13)           | 3 (19)             | 0 (0)            | 2 (13)            |
| Broux (2006)        | 30    | 13 (43)       | 17 (57)        | 0 (0)                 | 1 (6)                  | 2 (15)           | 4 (24)             | 0 (0)            | 1(6)              |
| Buz (2007)          | 74    | 39 (53)       | 35 (47)        | 2 (5)                 | 3 (9)                  | 3 (8)            | 7 (20)             | 0 (0)            | 0 (0)             |
| Chung (2007)        | 71    | 29 (41)       | 42 (59)        | 0 (0)                 | 4(10)                  | 0 (0)            | 4(10)              | 0 (0)            | 8 (19)            |
| Cook (2006)         | 42    | 19 (45)       | 23 (55)        | 0 (0)                 | 0 (0)                  | 4(21)            | 5 (22)             | 0 (0)            | 1(4)              |
| Doss (2005)         | 19    | 7 (37)        | 12 (63)        | 0 (0)                 | 2(17)                  | 0 (0)            | 2 (17)             | 1(14)            | (O) O             |
| Kasirajan (2003)    | 15    | 5 (33)        | 10 (67)        | 0 (0)                 | 5 (50)                 | 1(20)            | 5 (50)             | 0(0)             | (O) O             |
| Kokotsakis (2007)   | 32    | 22 (69)       | 10 (31)        | 0 (0)                 | 1 (10)                 | 1(5)             | 1 (10)             | 0 (0)            | 1(10)             |
| Kuhne (2005)        | 41    | 5 (12)        | 36 (88)        | 0 (0)                 | 6 (17)                 | 0 (0)            | 6 (17)             | N/S              | N/S               |
| Lebl (2006)         | 17    | 7 (41)        | 10 (59)        | 1(14)                 | 2 (20)                 | 1(14)            | 2 (20)             | 0 (0)            | 0 (0)             |
| Mcphee (2006)       | 13    | 8 (62)        | 5 (38)         | 0 (0)                 | 1 (20)                 | 2 (25)           | 1 (20)             | 0 (0)            | <b>O</b> (O)      |
| Ott (2004)          | 18    | 6 (33)        | 12 (67)        | 0 (0)                 | 2(17)                  | 0 (0)            | 2(17)              | 0 (0)            | 2(17)             |
| Pacini (2005)       | 66    | 15 (23)       | 51 (77)        | 0 (0)                 | 3 (6)                  | 0 (0)            | 4(8)'              | 0 (0)            | 4(8)'             |
| Riesenman (2007)    | 62    | 14 (23)       | <b>48</b> (77) | 0 (O)                 | 11(23)                 | 2(14)            | 19 (40)            | 0 (O)            | <b>O</b> (O)      |
| Rousseau (2004)     | 36    | 8 (22)        | 28 (78)        | 0 (O)                 | 6 (21)                 | 0 (0)            | 6 (21)             | 0 (O)            | 3 (11)            |
| Stampfl (2005)      | 10    | 5 (50)        | 5 (50)         | 0 (0)                 | 0 (0)                  | (0) O            | (0) O              | 0 (0)            | <del>2 (0)</del>  |
| Total               | 589   | 220 (37)      | 369 (63)       | (4(2))                | 50 (14)                | 18 (8)           | 72 (20)            | $1 (0)^{a}$      | $22(7)^{a}$       |

*Conclusions:* Meta-analysis of retrospective cohort studies indicates that endovascular treatment of descending thoracic aortic trauma is an alternative to open repair and is associated with lower postoperative mortality and ischemic spinal cord complication rates. (J Vasc Surg 2008;48:1343-51.)

#### dav.pacini@gmail.com

#### Operative Repair or Endovascular Stent Graft in Blunt Traumatic Thoracic Aortic Injuries: Results of an American Association for the Surgery of Trauma Multicenter Study

#### Table 3 Outcomes by Therapeutic Modality

| Outcome                                       | All Patients<br>(N = 193) | Operative Repair<br>(N = 68) | Endovascular Stent Graft<br>(N = 125) | Odds Ratio<br>(95% Cl) | <i>p</i> * |
|-----------------------------------------------|---------------------------|------------------------------|---------------------------------------|------------------------|------------|
| Mortality<br>Percent (x) died<br>Any systemic | 13.0 (25)                 | 23.5 (16)                    | 7.2 (9)                               | 3.97 (1.65 to 9.56)    | 0.001      |
| Percent (x) yes<br>Complications              | 45.1 (87)                 | 50.0 (34)                    | 42.4 (53)                             | 1.36 (0.75 to 2.46)    | 0.311      |
| Percent (x/n)<br>paraplegia <sup>†</sup>      | 1.6 (3/193)               | 2.9 (2/68)                   | 0.8 (1/125)                           | 3.76 (0.33 to 42.21)   | 0.284      |

#### Table 6 Stent Graft Related Complications

|                                              | All (n = 125) | Gore (n = 89) | Cook (n = 17) | Odds Ratio (95% Cl) | р     |
|----------------------------------------------|---------------|---------------|---------------|---------------------|-------|
| Endoleak, % (n)                              | 13.6 (17)     | 10.1 (9/89)   | 29.4 (5/17)   | 0.27 (0.08 to 0.94) | 0.047 |
| Any stent graft related complications, % (n) | 18.4 (23)     | 15.7 (14/89)  | 35.3 (6/17)   | 0.34 (0.11 to 1.08) | 0.087 |
| Any stent graft related complications,       | 4.8 (6)       | 5.6 (5/89)    | 5.9 (1/17)    | 0.95 (0.10 to 8.70) | 1.000 |
| endoleak excluded, % (n)                     |               |               |               |                     |       |

#### J of Trauma 2008







## Traumatic rupture of the thoracic aorta: Ten years of delayed management

Davide Pacini, MD<sup>a</sup> Emanuela Angeli, MD<sup>a</sup> Rossella Fattori, MD<sup>b</sup> Luigi Lovato, MD<sup>b</sup> Guido Rocchi, MD<sup>a</sup> Luca Di Marco, MD<sup>a</sup> Marcello Bergonzini, MD<sup>a</sup> Giovanni Grillone, MD<sup>d</sup> Roberto Di Bartolomeo, MD<sup>a</sup>



Grillone, Di Bartolomeo, Pacini (left to right)

## **GROUP II DELAYED REPAIR (48 PTS)**

#### Average time from injury to the aortic repair

| Surgical repair         | Endovascular          |
|-------------------------|-----------------------|
| (30 patients)           | repair (15 patients)  |
| 4.8 <u>+</u> 4.1 months | 9.6 <u>+</u> 9.1 days |

p=0.001

J Thorac Cardiovasc Surg 2005;129:880-4





# Which is not a suitable anatomy for stent graft in a traumatic injury?

Proximal neck< 0.5 mm (risk of Isa/vertebral artery coverage or cerebellar infarction)

Intramural hemorrage at neck site

Femoral/iliac artery < 7-8 mm of diameter

Small aortic diameter in young patients

Angulate arch <60°













## Traumatic aortic lesion: BOLOGNA EXPERIENCE



Mortality: 2 pts (4.5%)

1 pt before repair for aortic rupture 1 pt after stent repair for MOF

Since 2005 no Surgical Repair for Traumatic Aortic Rupture







## Algorithm in thoracic trauma patients







### **EVOLUTION IN THE TREATMENT**





Mortality (%)





## THANK

YOU

#### **Alma Mater Studiorum**





# Potential problems with EVAR in ATAR

small access vessel (young females)

angulated arch

excessive oversizing of ESGs

(available ESGs: smallest size 20 mm)

coverage of LSA

#### collapse of ESGs



Cardiac Surgery Department - University dav.pacini@gmail.com


# Morbidity and mortality of EVAR in ATAR

| Table 1: Endovascular treatment: results of literature review |               |            |            |                                             |
|---------------------------------------------------------------|---------------|------------|------------|---------------------------------------------|
|                                                               | N             | Mortality  | Paraplegia | Complications (n)                           |
| Thompson et al                                                | 5             | 0          | 0          | 0                                           |
| Fujikowa et al                                                | 6*            | 1**        | 0          | 0                                           |
| Orend et al                                                   | 11            | 1**        | 0          | 2 II <sup>ary</sup> vascular<br>surgery     |
| Lachat et al                                                  | 12*           | 1**        | 0          | 1 endoleak II <sup>ary</sup><br>stent graft |
| Daenen et al                                                  | 7             | 1**        | 0          | 0                                           |
| Czermak et al                                                 | 6             | 0          | 0          | 1 endoleak II <sup>ary</sup><br>stent graft |
| Melnitchouk et al                                             | 15            | 1          | 0          | Type I endoleak (1)                         |
| Scheinert et al                                               | 10            | 0          | 0          | Renal failure (1)                           |
| Marty-Ané et al                                               | 9             | 0          | 0          | 0                                           |
| Orford et al                                                  | 9             | 1          | 0          | Arm ischemia (1)                            |
| Amabile et al                                                 | 9             | 0          | 0          | 0                                           |
| Personal experi-<br>ence                                      | 33            | 0          | 0          | 1 atelectasia                               |
| Total                                                         | 128           | 6 (5%)     | 0          |                                             |
| * Emergency cases, *                                          | * not procedu | re related | <b>!</b>   |                                             |



Rousseau H CIRSE 2007

0

# **TEAM approach (Mainz)**

- EVAR for acute thoracic pathologies introduced in 1995
- team of surgeons and interventional radiologists
- anesthesiology: general (local) anesthesia
- Back-up of perfusionist with CPB
- hybrid OR





# **Patients and Methods (Mainz)**

- follow-up last 13 years (clinical visits and CT-scan every year)
- Patients (9) traumatized by motorbike/car accidents and incomplete suicides.
- mean age was 32.3 ± 12.3 years (range 18–49 years)

#### accompanying findings:

- ✓ hemato-mediastinum and hematothorax (9)
- ✓ pneumothorax (2)
- ✓ serial rib fractures (7)
- $\checkmark$  fractures of the peripheral skeleton (7)
- ✓ cranial fractures (7)
- ✓ intracranial trauma (edema (1), subarachnoid bleeding (2))
- ✓ epidural hematoma (1)
- ✓ intra-abdominal bleeding (liver (1), spleen (3))
- ✓ mesenteric trauma (2)

#### rupture site loco typico (8), rupture site distal descending (1)

Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23-34



# EVAR data (Mainz)

- CT-confirmed diagnosis of ATAR
- CT reconstructions used for procedure planning
- ESGs inserted via femoral (7) or iliac (2) cutdown
- ESGs placed distal of the subclavian artery (7)
- ESGs placed distal of the left carotid artery (2) (LSA covered)
- ESG migrated during deployment (1) => 2nd ESG with good result





Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23-3

# **Results (Mainz)**

- All procedures were successful.
- All patients demonstrated immediate sealing of bleeding.
- No neurologic deficits occurred.
- No procedure-related or 30-day mortality.
- Follow-up was 46.4  $\pm$  43.9 months (range 3–113 months).



Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23



# **Results (Mainz)**

One patient suffered from depression and committed suicide 20

months after uneventful follow-up.

- One patient demonstrates a type I endoleak (has reduced spontaneously).
- One patient developed new-onset arterial hypertension

(buckling of the ESG, pressure gradient of 15 mmHg over ESG;

aortic surgery: 12 months after EVAR, proximal struts were



removed).



Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23-3

# Summary

#### Emergency open surgery for ATAR has high mortality (5-25%) and

#### paraplegia rates (5-19%).

Rousseau H et al. J Thorac Cardiovasc Surg 2005;129:1050–55. Kuhne CA et al. Unfallchirurgie 2005;108:279–87.

Our EVAR data demonstrate excellent outcome and ESG durability

without ESG-related mortality or morbidity in long-term follow-up.

We consider the treatment of contained ATAR secondary to other

life-threatening traumas (interdisciplinary decision based on

individual clinical conditions and CT findings).





# Summary

### Literature reports high technical success rates for EVAR in patients with ATAR of between 92% and 100%.

Rousseau H et al. J Thorac Cardiovasc Surg 2005;129:1050–55.

Michelet P et al. Ann Fr Anesth Reanim 2005;24:355–360. Attia C et al. Cardiovasc Intervent Radiol 2007;30:628-37. Saratzis NA et al. Cardiovasc Intervent Radiol 2007;30:370–75.

### Technical failures predominantly due to proximal type-I endoleaks (7.8%).

Neuhauser B et al. Ann Surg 2004;70:1039-44.

#### Damage to femoral or iliac vessels occurs in up to 23% of cases.

Amabile P et al. Ann Vasc Surg 2006;20:723–30.

- Secondary procedure-related complications included collapse of ESGs (3.6%).
- After LSA covering, no patient suffered from arm claudication or
  - neurological events in our series.





# Conclusion

#### EVAR is a safe and effective procedure for emergency

treatment of acute bleeding originating from ATARs.

**Results are excellent**,

even over the long term.

Follow-up is mandatory to identify late complications of

ESGs and to make additional corrections if required.





# UNIVERSITĀTSmedizin. MAINZ

Vascular Course: Open and Endovascular Aortic Therapy, Bergamo, Italy, March 2010

# TRAUMATIC AORTIC RUPTURE (Pathomechanisms and treatment options)



**Ernst Weigang** Cardiac Surgery Department - University of Bologna – Italy Department of Cardiothoracic and Vascula Surgery Miniversity Hospital Mainz, Germany



# What types of accidents cause ATAR?

1) car and motorcycle crashes

2) pedestrian hits by motor vehicle

3) falls > 3 meters (e.g. airplane crashes)

4) all of them







# **Indications for EVAR in ATAR?**

- 1) individual patient-based decision
- in patients with combination of aortic and multi-organ injuries
  - a) EVAR preferable to surgery
  - b) surgery preferable to EVAR
- 3) answer 1) and 2a)
- 4) answer 1) and 2b)





# **Advantages of EVAR in ATAR?**

1) no thoracotomy

2) no aortic X-clamping

3) length of covered aorta limited to the diseased segment

4) less risk of spinal-cord ischemia









# Potential problems with EVAR in ATAR?

- 1) small access vessel
- 2) coverage of LSA
- 3) collapse of ESGs
- 4) available size of ESGs

# 5) all of them







# Which statement is correct?

- 1) EVAR is a safe and effective procedure for emergency treatment of acute bleeding originating from ATARs.
- 2) Results are excellent, even over the long term course.
- 3) Follow-up is mandatory to identify late complications of

## ESGs.

- 4) all of them.
- 5) none of them.







# **EVAR in ATAR**





Cardiac Surgery Department - University of Bouseau H et al. Circulation 1999;99:498-504 dav.pacini@gmail.com



# **EVAR**







# **3 years after EVAR**





CT: 30-year-old male after motor vehicle accident; ATAR at the isthmus.



angiogram of ATAR at the isthmus





# **TEVAR** in ATAR







# **TEVAR in ATAR**







# ATAR (Mainz)







# 6 month follow-up after EVAR (Mainz)







# Chest X-ray – mediastinal extension





dav.pacini@gmail.com

# Chest X-ray – mediastinal extension





# **CT** – mediastinal hematoma







# **Angiography - disruption**







# **Angiography - disruption**







# **Physical signs**

- hemodynamic shock
- fracture of sternum, clavicle, scapula, or ribs
- steering wheel imprint on chest
- cardiac murmurs
- hoarseness
- dyspnea
- back pain
- hemothorax
- pseudo-"coarctation syndrome" with unequal extremity blood pressures
- paraplegia or paraparesis







# Diagnostic

- chest X-ray
- TTE / TEE
- CT-scan
- angiography







## **TEE - aortic tear**







# CT - mediastinal hematoma / hemothorax





dav.pacini@gmail.com



# **EVAR in ATAR**

39 published series (2001-2006)

352 patients

• 30-day-mortality: 11.2% (0-23.1)

paraplegia: none



Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23-35.

Literatur review



# **Patients and methods (Mainz)**

| (n)                      | Total | Traumatic<br>ruptures |
|--------------------------|-------|-----------------------|
| Procedures (total)       |       | 10                    |
| General anesthesia       |       | 9                     |
| Local anesthesia         |       | 1                     |
| Primary procedures       |       | 9                     |
| Stent-grafts             |       | 10                    |
| Stentor; Talent; Valiant |       | 2; 7; 1               |
| Secondary procedures     |       | 1/9 (11)              |
| Endovascular             |       |                       |
| Open surgery             |       | 1/9 (11%)°            |

Pitton MB et al. Cardiovasc Intervent Radiol. 2008;31:23-35.







# **Results (Mainz)**

|                                       | Traumatic rupture                 |  |
|---------------------------------------|-----------------------------------|--|
| Patients (n)                          | 9                                 |  |
| Male/female                           | 8/1                               |  |
| Age, years (range)                    | $32.3 \pm 12.3 (18-49)$           |  |
| 30-day mortality                      | 0                                 |  |
| 30-day morbidity                      | 0                                 |  |
| Stent-graft-related                   | 0                                 |  |
| Not stent-graft-related               | 0                                 |  |
| Follow-up, months (range)             | $46.4 \pm 43.9 (3-113)$           |  |
| Late mortality                        | 1/9 (11%) <sup>c</sup>            |  |
| Late morbidity                        | 1/9 (11%) <sup>g</sup>            |  |
| Stent-graft-related                   | 0                                 |  |
| Not stent-graft-related               | 1 open surgery                    |  |
| Endoleaks (EL)<br>and perigraft leaks | 1/9 (11%) proximal<br>anchor leak |  |





# Historical surgical repair – interposition of Dacron prosthesis





Cardiac Surgery Department - University of Bologna –Crawford; Diseases of the aorta; 1984 dav.pacini@gmail.com


# Mechanism of injury in blunt traumatic aortic rupture



























## conclusions

Endovascular repair :

- is safer than conventional surgery mostly in instable/emergent pts.
- allows for prompt treatment of associated lesions in complex multitrauma patients.
- may be considered as an hypothetical bridge to open surgery in case of late failure.
- trauma centers should have thoracic endovascular grafts available for optimal patient care.





## Traumatic aortic rupture: diagnosis ANGIO CT scan

- Widely available in Emergency Departments
- Rapid/ long volume coverage (total body) in a few seconds
  ECG gating (no pulsatility artifacts)



ascending aorta lesion



c.m. extravasation (complete rupture)



minimal tear





## **SURGICAL TREATMENT**

#### IMMEDIATE SURGERY : HIGH MORTALITY AND MORBIDITY

Hunt JP et al. *Thoracic aorta injuries: management and outcome of 144 patients* J TRAUMA 1996;40:547-56



Fabian TC, et al. *Prospective study of blunt aortic injury: multicenter trial of the AmericanAssociation for the surgery of Trauma*. J Trauma 1997;42:374-80

NUMBER OF PATIENTS: 274





20-40%)

#### Endovascular stent-graft of acute traumatic aortic lesion Emergency or delayed treatment?

Disadvantages of EV treatment in the acute phase

- facial bones trauma 15 % of cases —> no TEE
- systemic heparin vs. head and visceral lesions
- aortic dimension in hypovolemic shock
- frequent IMH of the aortic wall (risk of migration/dissection)



Signs of impending rupture or pseudocoarctation syndrome (5 -10% of cases): emergency treatment



Cardiac Surgery Department - University of Bologna – Italy Cardiac Surg. Dept University of Bologna adv.faciili@gmalil.com



# Which is not a suitable anatomy for stent graft in a traumatic injury?

Proximal neck< 0.5 mm (risk of lsa/vertebral artery coverage or cerebellar infarction)

Intramural hemorrage at neck site

Femoral/iliac artery < 7-8 mm of diameter

emergency SG



surgery











## Potential risks of Isa coverage

- Elypoplasia of one vertebral artery in 10-20% of cases

Left vertebral artery dominant in >60%

#### Deliberate vertebral ligation to occlude intracranial aneurysms results in 5.4% of ischemic complications



| 9.2%.<br>1                                             | TABLE 5           Neurological worsening after Hunterian ligation or tourniquet placement |                                  |                       |                            |           |          |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|-----------------------|----------------------------|-----------|----------|
|                                                        |                                                                                           | No. (%)                          | Mode of Deterioration |                            |           |          |
| Aneurysm Site                                          | No. of of Cases<br>Cases Deterio-<br>rating                                               | Vertebro-<br>basilar<br>Ischemia | Surgical<br>Trauma    | Subarachnoid<br>Hemorrhage | Vasospasm |          |
| basilar bifurcation &<br>superior cerebellar<br>artery | 83                                                                                        | 27 (32.5%)                       | 12 (14.5%)            | 3 (3.6%)                   | 7 (8.4%)  | 5 (6%)   |
| basilar trunk                                          | 46                                                                                        | 10 (21.6%)                       | 6 (13%)               | 2 (4.3%)                   | 2 (4.3%)  | -        |
| vertebrobasilar junction                               | 35                                                                                        | 11 (31.4%)                       | 7 (20%)               | 2 (5.7%)                   | 2 (5.7%)  | -        |
| vertebral artery                                       | 37                                                                                        | 2 (5.4%)                         | 1 (2.7%)              | · *                        | 1 (2.7%)  |          |
| totals                                                 | 201                                                                                       | 50 (25%)                         | 26 (13%)              | 7 (3.5%)                   | 12 (6%)   | 5 (2.5%) |

#### Steinberg G et all, J Neurosurg 199



Cardiac Surgery Department - University of Bologna – Italy Cardiac Surg. Dept. University of Bologna dawgacini@gmail.com



## CRITERI DI DILAZIONE SECONDO AKINS

## (Annals 1981)

- Trauma severo del sistema nervoso centrale
- Insufficienza respiratoria severa
- Estese ustioni corporee
- Ferite aperte contaminate
- Sepsi





**CRITERI DI DILAZIONE** (Pierangeli 1992)

- Assistenza in TI dedicata
- Monitoraggio dei parametri vitali
- Assistenza respiratoria (incl. VAM)
- Controllo dell'ipertensione
- Trattamento chirurgico delle lesioni
   associate







## Segni di rottura imminente (Pate, Arch Surg 1995)

- Pressione arteriosa incontrollabile
- Emotorace imponente e recidivante > 800 cc
- Lesione circonferenziale
- Stravaso di m.d.c.







6 ore dopo il trauma

8 giorni dopo il trauma <sup>Cardiochirurgia Bologna</sup> <sup>Vir. Prof. R. Di Bartolomo</sup>

#### **TRATTAMENTO MEDICO INTENSIVO**

- Accesso venoso centrale
- Monitoraggio cruento PA
- **Ipotensione controllata** (PA max<120mmHg>80mmHg)
- Infusione ev: β-bloccanti vasodilatatori: nitroprussiato TNT Ca<sup>++</sup>antagonisti





### **ROTTURE AORTICHE ACUTE**

## Mortalità

#### Chirurgia immediata

#### **Chirurgia dilazionata**

|          |          | Aortic        | <b>AssociatedDverall</b> |     |  |
|----------|----------|---------------|--------------------------|-----|--|
| Authors  | Patients | lesion<br>(%) | lesions<br>(%)           | (%) |  |
| Kirsch   | 43       | 16            | 9                        | 25  |  |
| Akins    | 44       | 20            | 2                        | 22  |  |
| Katz     | 35       | 14            | 11                       | 25  |  |
| Pate     | 59       | 10            | 3                        | 13  |  |
| Mattox   | 32       | 18            | 18                       | 36  |  |
| Cowley   | 58       | 32            | 10                       | 42  |  |
| Del Ross | i 27     | 22            | 11                       | 33  |  |

| Authors Pat        | ients | Delay<br>(days) | Mortality<br>(%) |
|--------------------|-------|-----------------|------------------|
| Pate               | 41    | 1 -168          | 10               |
| Kalmar             | 22    | 5 - 85          | 0                |
| Akins <sup>•</sup> | 14    | 2 - 79          | 14               |
| Kipfer             | 10    | 10 - 222        | 0                |
| Maggisano 4        | 44    | 1 - 210         | 10               |
| Pierangeli         | 33    | 6-350           | 0                |





## **Trattamento dilazionato**

| Autore    | Anno | Pazienti (N) | Mortalità<br>complessiva<br>N (%) | Mortalità<br>dovuta a<br>rottura aortica<br>N (%) |
|-----------|------|--------------|-----------------------------------|---------------------------------------------------|
| Akins     | 1981 | 19           | 2 (10.5)                          | -                                                 |
| Kipfer    | 1994 | 10           | 0 (0)                             | 0 (0%)                                            |
| Maggisano | 1995 | 44           | 2 (4.5)                           |                                                   |
| Pate      | 1995 | 112          | 21 (18.8)                         | 6 (5.4)                                           |
| Fabian    | 1997 | 21           | 11 (52.4)                         | 0 (0)                                             |
| Holmes    | 2002 | 30           | 8 (26.7)                          | 1 (3.3)                                           |
| Kwon      | 2002 | 10           | 1 (10)                            | 0 (0)                                             |
| Langanay  | 2002 | 19           | 3 (15.8)                          | 0 (0)                                             |
| Pacini    | 2005 | 48           | 2 (4.2%)                          | 1 (2.1)                                           |





#### **Prognosis of ATAR**

ATAR is the most common cause of death after traffic accidents

(15-18% of all deaths after car accidents)

- 80% of victims die at the place of accident (complete aortic transection)
- only 20% reach the hospital alive (incomplete disruption of the intima and media, adventitia and surrounding mediastinal structures intact)
- of those reaching the hospital alive, an additional 5-15% die within a

few hours due to massive, multi-system injuries (unrelated to ATAR)

5-20% of untreated patients are at risk for 2nd rupture in the 1st week

Pate JW et al. World J Surg 1995;19:119-26.







## Survival rate after ATAR without treatment







#### Historical surgical repair ATAR (loco typico)







#### Historical surgical repair direct suture







#### Historical surgical repair - patch







#### Historical open repair graft interposition







Cardiac Surgery Department - University of Bologna – Italy dav.pacini@gmail.com



Neschis DG et al. N Engl J Med 2008;359:1708-16.

**Historical surgical results** 

paraplegia

5-19 %

respiratory failure

22 %

mortality

5-25 %





#### **Operative approaches in ATAR**

| Variable                         |               | Relative Degree of Risk* |                     |
|----------------------------------|---------------|--------------------------|---------------------|
| Complication                     | Clamp and Sew | Shunt–Bypass             | Endovascular Repair |
| Operative stress                 | High          | Medium                   | Low                 |
| Blood loss                       | Medium        | Medium                   | Low                 |
| Operative time                   | Medium        | High                     | Low                 |
| Paraplegia                       | High          | Medium                   | Low                 |
| Clinical scenario                |               |                          |                     |
| Patient with high surgical risk  | High          | Medium                   | Low                 |
| Patient with severe lung injury  | High          | Medium                   | Low                 |
| Patient with severe head injury  | High          | High                     | Low                 |
| Patient with challenging anatomy | Medium        | Low                      | High                |

\* Relative degree of risk refers to a general comparison among the three operative procedures.



Cardiac Surgery Department - University Neschis DG et al. N Engl J Med 2008;359:1708-16. dav.pacini@gmail.com











## **TEVAR technique**



#### **EVAR in ATAR**





#### **ATAR (loco typico)**



A: CT shows a rtic laceration with mediastinal hematoma. **B: status after EVAR** C: angiography shows typical outpouching of vessel at site of contained rupture D: status after EVAR shows complete sealing of the

bleeding

of Bologna – Italy



dav.pacini@gmail.com

Pitton MB et al. Cardiovasc Intervent Radiol. 2008

#### **Advantages of EVAR in ATAR**

- no thoracotomy
- no aortic X-clamping
- length of covered aorta limited to the diseased segment
- less risk of spinal-cord ischemia
- severe other injuries pose fewer problems
  - $\rightarrow$  low dose heparin !



