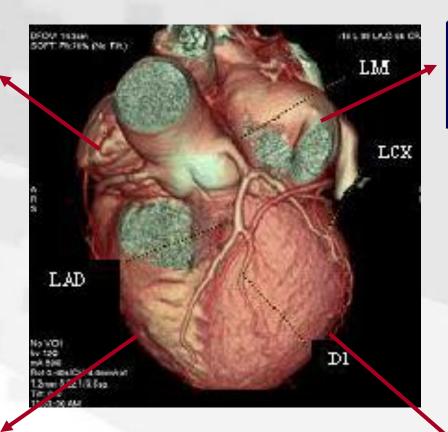
VALUTAZIONE MORFO-FUNZIONALE DELLE CAMERE CARDIACHE

Gianluca Pontone, MD

II° CONGRESSO NAZIONALE DI ECOCARDIOCHIRUGIA


Milano, 27 - 29 Ottobre 2008

SUMMARY

Right Atrium and Cardiac Veins

Left Atrium and Pulmonary Veins

Left Ventricle and Aortic root

Right Ventricle

Pre – RFCA characterization of LA

The electrophysiologist need to know four things from mapping before ablation...

- 1. Is there normal anatomy?
- 2. What is the ostial diameter of PV and the length to the first order branch?
- 3. Is there an extra-pulmonary vein such as a right middle vein?
- 4. Are there major anomalies such as a common ostium or an anomalous pulmonary venosu return?
- 5. Is there a left atrial appendage thrombus?

Journal of the American College of Cardiology © 2003 by the American College of Cardiology Foundation Published by Elsevier Science Inc.

Characterization of Left Atrium and Distal Pulmonary Vein Morphology Using Multidimensional Computed Tome

David Schwartzman, MD, FACC,* Joan Lacomis, MD,† W Pittsburgh, Pennsylvania

Vol. 41, No. 8, 2003 ISSN 0735-1097/03/\$30.00 doi:10.1016/\$0735-1097(03)00124-4

The International Journal of Cardiovascular Imaging (2005) 21: 133–139 DOI 10.1007/s10554-004-5347-5 © Springer 2005

CT evaluation of left atrial pulmonary venous anatomy

William Stanford¹ & Jerome F. Breen² ¹University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA;²St. Mary's Hospital, Rochester, MN, USA

Received 06 October 2004; accepted in revised form 26 October 2004

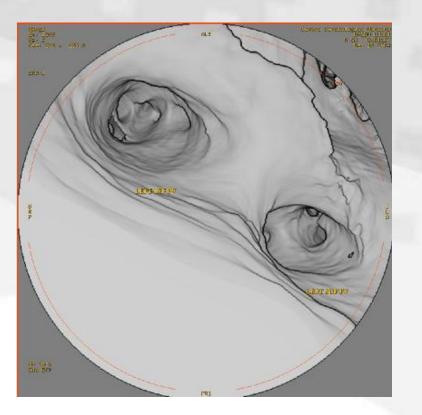
AJR:183, September 2004

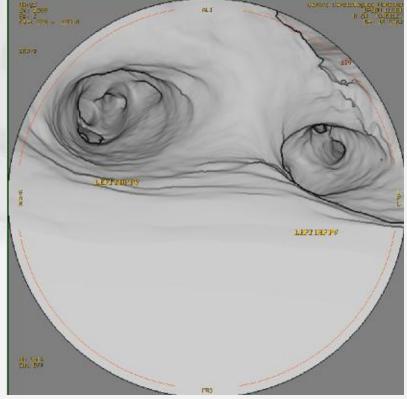
Review

graphy, left atrial pulmonary, venous anatomy

MDCT of the Left Atrium and Pulmonary Veins in Planning Radiofrequency Ablation for Atrial

Paul Cronin¹, Michael B. Sneider¹, Ella A. Kazerooni¹


RUOLO DELLA TC MULTIDETETTORE NELLA VALUTAZIONE DELL'ANATOMIA DELL'ATRIO SINISTRO IN PAZIENTI AFFETTI DA FIBRILLAZIONE ATRIALE PAROSSISTICA.


G. Pontone, D. Andreini, A. Annoni, A. Formenti, E. Bertella, G. Ballerini, E. Nobili, G. Maccabelli, P. Della Bella, M. Pepi SIC 2007

VR and MPR of Superior Left PV

Intra – atrial view of PV ostium

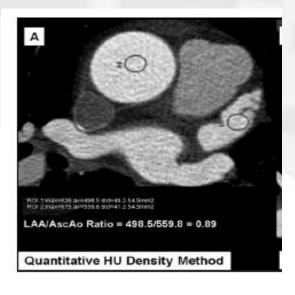
Moderate correlation between Echo – LA_D vs CT - LA_V (r: 0.51) Good correlation between Echo – LA_A vs CT - LA_V (r: 0.72)

CT - LA_v and PV-ostial dimensions were signifcantly greater in the AF patients

...but overall the ostium size presents a poor correlation with CT – LA_V ...

Enlarged PV -ostium AF

Indipendent predictor of recurrance of AF

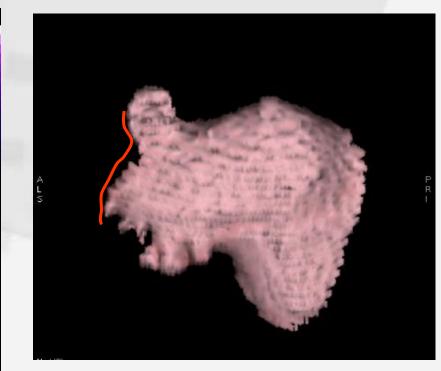


LA dilatation

MDCT and LA appendage Thrombus: quantitative evaluation

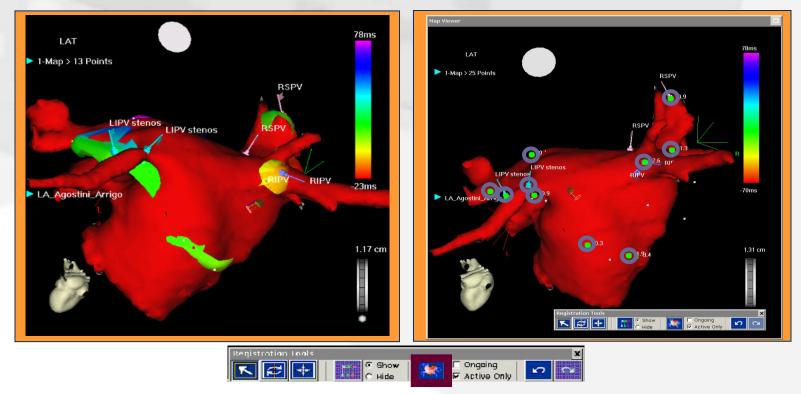
Multidetector row computed tomography for identification of left atrial appendage filling defects in patients undergoing pulmonary vein isolation for treatment of atrial fibrillation: Comparison with transesophageal echocardiography

Apoor Patel, MD, Eric Au, MD, Kerry Donegan, MD, Robert J. Kim, MD, Fay Y. Lin, MD, Kenneth M. Stein, MD, Steven M. Markowitz, MD, Sei Iwai, MD, Jonathan W. Weinsaft, MD, James K. Min, MD, Bruce B. Lerman, MD, FHRS (Heart Rhythm 2008;5:253–260)



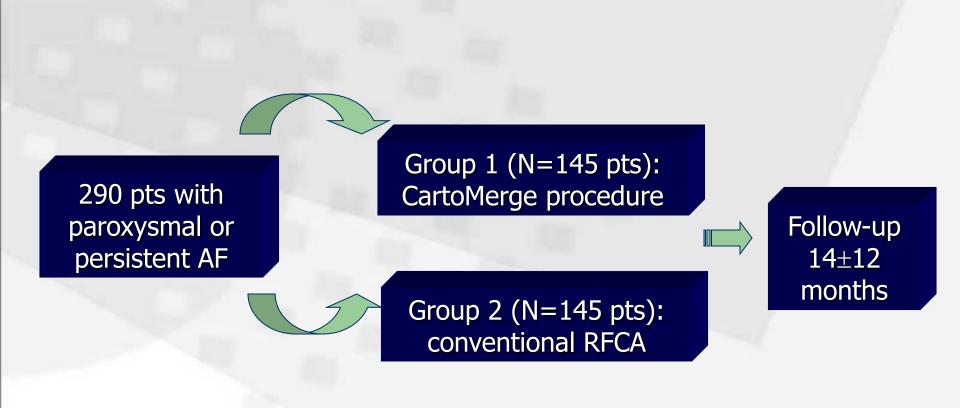
LAA/Asc Ao HU≥ 75% vs TEE and Pulsed Doppler

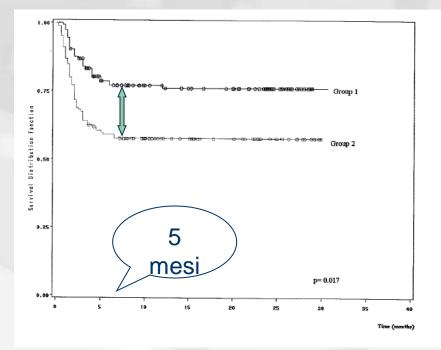
CONCLUSION Current-generation MDCT successfully identifies LAA thrombus and dense nonclearing SEC with high sensitivity and moderate specificity. Importantly, LAA/AscAo HU ratios >0.75 demonstrate 100% negative predictive value for exclusion of LAA thrombus or dense nonclearing SEC. These results suggest that in patients undergoing pulmonary vein isolation procedures, MDCT examinations that demonstrate LAA/AscAo HU ratios >0.75 may preclude the need for preprocedural TEE.

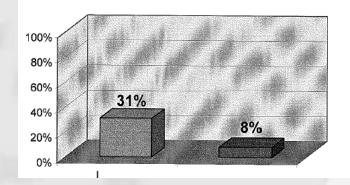

LA appendage Thrombus: False Negative TEE

CARTO-MERGE: real time navigation in a 3D anatomical model of LA during RFCA procedure

Point to Surface Registration




Image integration-guided catheter ablation of atrial fibrillation: a prospective randomized study


Paolo Della Bella¹, Gaetano Fassini¹, Manuela Cireddu¹, Stefania Riva¹, Corrado Carbucicchio¹, Francesco Giraldi¹, Giuseppe Maccabelli¹, Nicola Trevisi¹, Massimo Moltrasio¹, Mauro Pepi¹, Claudia Galli¹, Daniele Andreini¹, Giovanni Ballerini¹, Gianluca Pontone¹

¹Centro Cardiologico Monzino, IRCCS, Milan, Italy

J Cardiovac Electrophysiol, in press

i≣ LA Vol⊵90ml ∎ LA Vol<90ml

Group 1: AF-free survival rate 81% Group 2: AF-free survival rate 64%* *:p=0.017

Pre – RFCA characterization of LA

Post – RFCA characterization of LA

Post – RFCA complications

Pulmonary Veins

PV Stenosis (1.5% – 42%) PV Thrombosis PV Dissection

Intrathoracic

Pleural Effusion (3%-4.8%) Pericardial Effusion (3%-4.8%) Cardiac Perforation

Other

Catheter Site Ematoma (13%) Arteriovenosu Fistula (1%) Systemic Emboli (1.4% – 2.6%)

Post – RFCA complications: PV stenosis

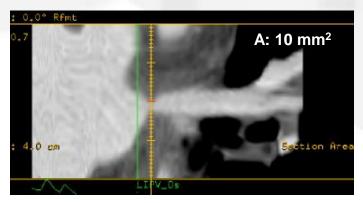
Imaging and Diagnostic Testing

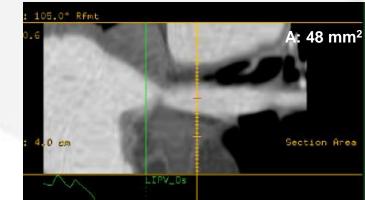
Detection of pulmonary vein stenosis by transesophageal echocardiography: Comparison with multidetector computed tomography

Gardar Sigurdsson, MD,^a Richard W. Troughton, MB, ChB, PhD,^a Xiao-Fang Xu, MD,^a Holger P. Salazar, MD, FACC,^a Oussama M. Wazni, MD,^a Richard A. Grimm, DO, FACC,^a Richard D. White, MD, FACC,^{a,b} Andrea Natale, MD, FACC,^a and Allan L. Klein, MD, FACC^a *Cleveland*, *OH*

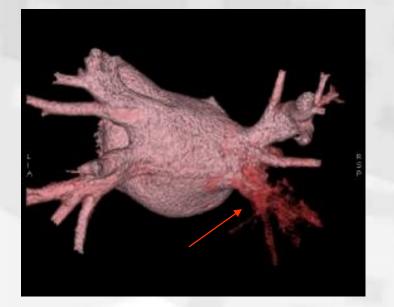
Table II. Number of stenosis (% diameter lass) detected by MDCT in 36 subjects

	Visualized, n (%)	< 29 %	30%-49%	50%-69%	≥70%
LUPV	36 (100%)	29	3	3	1
ШРV	36 (100%)	28	6	2	0
RUPV	36 (100%)	31	4	1	0
RLPV	36 (100%)	33	3	0	0

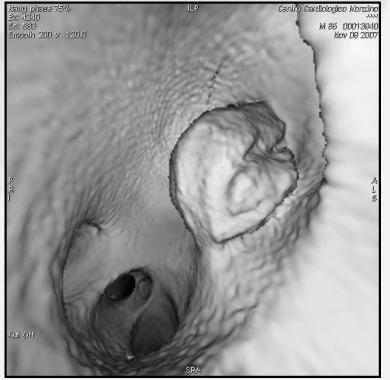

LUPV, left upper pulmonary vein; LLPV, left lower pulmonary vein; RUPV, right upper pulmonary vein; RLPV, right lower upper pulmonary vein. **Table III.** Transesophageal echocardiography results for peak velocity, both systolic and diastolic


Mean ± SD	Visualized, n (%)	Peak velocity systolic (cm/s)	Peak velocity diastolic (cm/s)
LUPV	36 (100%)	66 ± 43	61 ± 34
ШРV	32 (89%)	56 ± 40	$51 \pm 30*$
RUPV	36 (100%)	62 ± 33	67 ± 27
RLPV	34 (94%)	$51 \pm 22*$	$56 \pm 26*$

*P < .05 between upper and lower pulmonary vein.


Post – RFCA complications: PV stenosis

Post – RFCA complications: PV thrombosis


Pre – RFCA characterization of LA

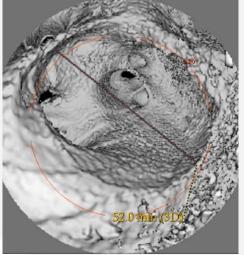
Post – RFCA characterization of LA

LA disease

Left Atrium Mixoma

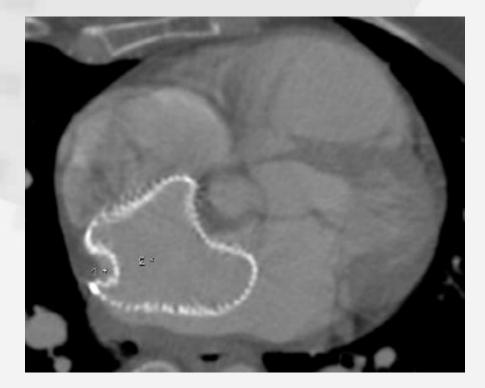
1257

W = 741 L = 104


ASD Type II

Axial Plan


Sagital Plan



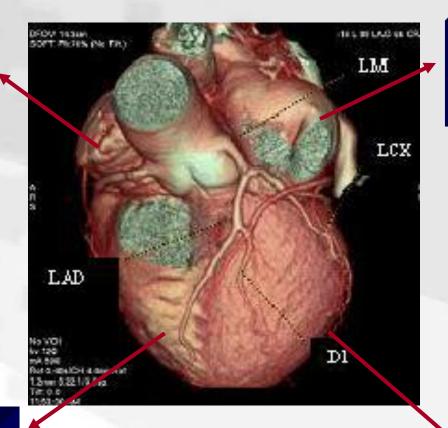
Navigator

Non-correct AD positioning

Correct AD positioning

LEFT ATRIUM: conclusions

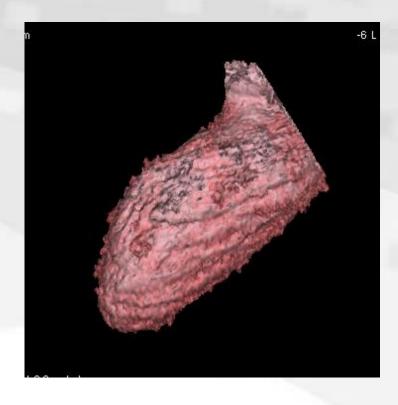
Pre – RFCA characterization of LA


Post – RFCA characterization of LA

LA disease

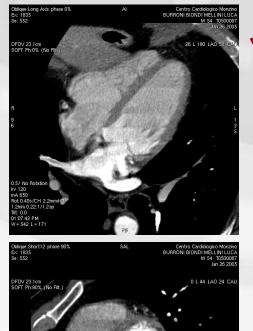
- → Road-map for RFCA
 - Predict the non-responsive pts to RFCA
- → Follow-up of RFCA-complications
 - LA anatomical disease

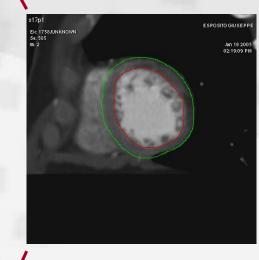
SUMMARY

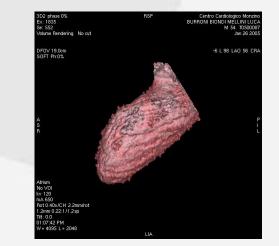

Right Atrium and Cardiac Veins

Left Atrium and Pulmonary Veins

Left Ventricle and Aortic root


Right Ventricle




Global Left Ventricular Function: methodology

IPF

0.5/ No Rotation kv 120 mA 650 Bot 0.40s/CH 2.2mm/rot 1.2mm 0.22:1/1.2sp Titt: 0.0 01:07:42 PM W = 542 L = 171

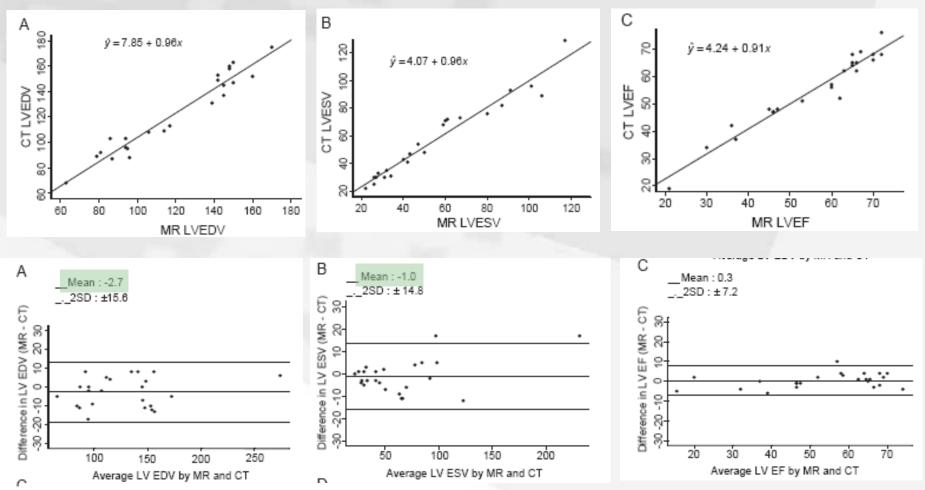
ADVANCES IN NONNUCLEAR IMAGING TECHNOLOGIES

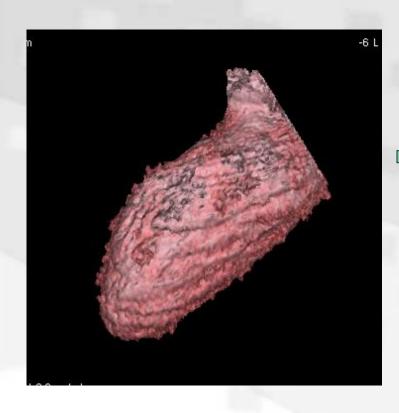
Comprehensive cardiac CT study: Evaluation of coronary arteries, left ventricular function, and myocardial perfusion—Is it possible? (J Nucl Cardiol 2007;14:229-43.)

Ricardo C. Cury, MD,^{a,b} Koen Nieman, MD,^c Michael D. Shapiro, MD,^{a,b} Khurram Nasir, MD,^{a,b} Roberto C. Cury, MD,^d and Thomas J. Brady, MD^{a,b}

Table 3. Correlation of EF and ventricular volumes (ESV and EDV) between MDCT and cine ventriculography, 2-dimensional echocardiography, SPECT, and cardiac MRI

		Correl	ation coeffi	Absolute	
Author	MDCT	ESV	EDV	EF	difference in EF (%)
Two-dimensional echocardiography					_
Dirksen et al (2002) ⁸²	4 Slice	_	_	_	-1.3 ± 4.5
Schuijf et al (2005) ¹⁰⁵	16 Slice	_	_	0.96	-0.02 ± 3.9
Schuijf et al (2006) ¹⁰⁶	16 Slice	0.98	0.97	0.91	1.7 ± -4.9
SPECT					
Schepis et al (2006) ⁸⁰	64 Slice	0.96	0.92	0.82	-1.1 ± 1.7


Global Left Ventricular Function: MDCT vs MRI


Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance

Subha V. Raman, MD, MSEE, Mona Shah, MD, Beth McCarthy, BSRT, Anne Garcia, BSRT, and Amy K. Ferketich, PhD Columbus, OH

(Am Heart J 2006;151:736-44.)

Global Left Ventricular Function

Regional Left Ventricular Function

Regional Left Ventricular Function: MDCT vs Echo

(Am J Cardiol 2005;96:1011-1015)

Comparison of Multidetector Computed Tomography Versus Echocardiography for Assessing Regional Left Ventricular Function

Jonathan Lessick, MD, DSc^{a,*}, Diab Mutlak, MD^a, Shmuel Rispler, MD, DSc^a, Eduard Ghersin, MD^b, Robert Dragu, MD^a, Diana Litmanovich, MD^b, Ahuva Engel, MD^b, Shimon A. Reisner, MD^a, and Yoram Agmon, MD^a

Table 4 MDCT assessment of segment	al function versus ech	nocardiography as t	he gold stan
Segment	No. of Segments	Sensitivity	Specifici
16-segment approach	616	66% (103/155)	96% (443/

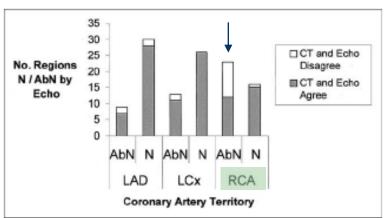


Figure 2. Agreement between MDCT and echocardiography (echo) per coronary artery territory for normal (N) and abnormal (AbN) regions as scored by echocardiography. CT = computed tomography; LAD = left anterior descending artery LCx = left circumflex artery; RCA = night coronary artery.

Regional Left Ventricular Function: MDCT and SPECT vs MRI

European Journal of Radiology 222 (2008) 222-222

EJR

www.elsevier.com/locate/ejrad

Functional imaging in the assessment of myocardial infarction: MR imaging vs. MDCT vs. SPECT

Andreas H. Mahnken^{a,b,*}, Philipp Bruners^{a,b}, Sven Stanzel^c, Ralf Kocs^d, Georg Mühlenbruch^a, Rolf W. Günther^a, Patrick Reinartz^{e,f}

> ⁴ Department of Diagnostic Radiology, RWTH Aachen University, Germany ⁵ Applied Medical Engineering, Meinkolt, Institute, RWTH Aachen University, Germany ⁴ Institute of Medical Statistics, RWTH Aachen University, Germany ⁴ Medical Clink I, RWTH Aachen University, Germany ⁴ Department of Nuclear Medicine, RWTH Aachen University, Germany ⁴ Radios Center of Diagnostic Rediology and Nuclear Medicine, Descending Germany ⁴ Reserved 4 January 2008; received in serviced form 20 May 2008; accepted 4 January 2008;

Table 2

Frequency tables for wall motion analysis comparing MDCT and MR imaging (A), SPECT and MDCT (B) and SPECT and MR imaging (C)

MDCT	MR imaging					
	Normal	Hypokinetic	Dyskinetic	Akinetic		
Normal	77	1	0	0		
Hypokinetic	1	44	5	0		
Dyskinetic	0	1	2	0		
Akinetic	0	5	0	17		
SPECT	MDCT					
	Normal	Hypokinetic	Dyskinetic	Akinetic		

	INOTHIAL	Hypokillette	Dyskilleuc	Akineue
Normal	68	17	0	1
Hypokinetic	10	30	3	7
Dyskinetic	0	1	0	2
Akinetic	0	2	0	12

MDCT vs MRI \rightarrow K:0.86 SPECT vs MRI \rightarrow K: 0.51

Left Ventricular Function: limitations

Temporal Resolution

Single Source CT: 175 msec Dual Source CT: 85 msec MRI, Echo < 50 msec

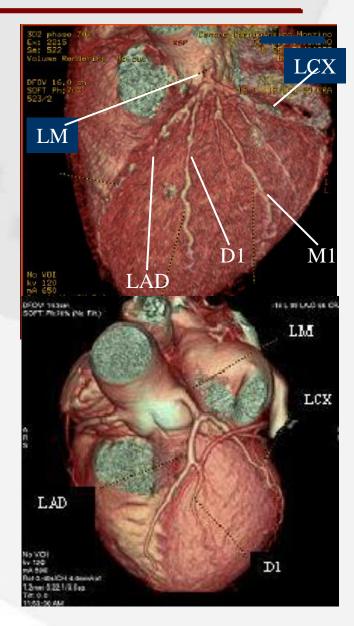
β-blockade

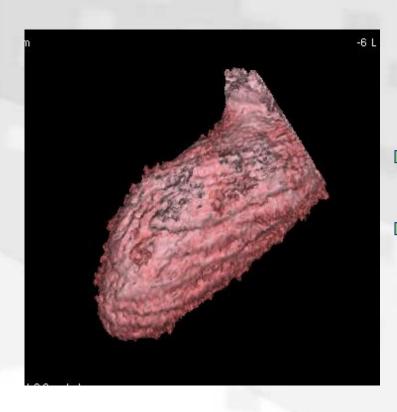
Because β -blocker is generally used in MDCT, it can alter the functional parametrs and thus limit the utility of functional analysis

Other

Radiation Exposure

LEFT VENTRICLE Global Left Ventricular Disease


Journal of the American College of Cardiology © 2007 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 49, No. 20, 2007 ISSN 0735-1097/07/\$32.00 doi:10.1016/jjacc.2007.01.086 Cardiac Imaging


Diagnostic Accuracy of Multidetector Computed Tomography Coronary Angiography in Patients With Dilated Cardiomyopathy

Daniele Andreini, MD, Gianluca Pontone, MD, Mauro Pepi, MD, Giovanni Ballerini, MD, Antonio L. Bartorelli, MD, FACC, Alessandra Magini, MD, Carlo Quaglia, MD, Enrica Nobili, MD, Piergiuseppe Agostoni, MD, PHD

Milan, Italy

*: p < 0,05	Group 1 (DCM)	Group 2 (Control)
Number	61	139
Feasibility	97,2%	96,1%
Sensitivity	99%	86,1%*
Specificity	96,2%	96,4%
NPV	99,85	96,4%*
PPV	81,2%	86,1%

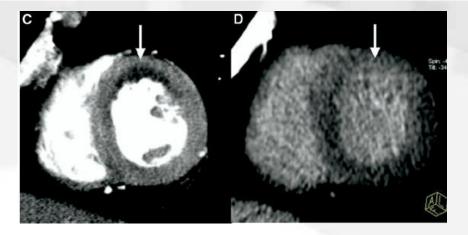
Global Left Ventricular Function

Regional Left Ventricular Function

Late Enhancement with MDCT

It is known that MRI can characterize MI with both early and late contrast patterns. First-pass imaging performed immediately after contrast administration may demonstrate areas of hypoenhancement in the endocardial core of the infarct corresponding to microvascular obstruction. Delayed images acquired more than 10 minutes after contrast administration may demonstrate regional hyperenhancement, corresponding to myocardial necrosis or scar. Because iodinated contrast agents used in CT have kinetics similar to gadolinium used in MRI, as discussed later, there is a rationale to believe that DHE-MDCT would be able to identify areas of MI

Late enhancement using multidetector row computer tomography: A feasibility study with low dose 80 kV protocol


Anja J. Reimann^a, Axel Kuettner^a, Bernhard Klumpp^a, Martin Heuschmid^a, Felix Schumacher^a, Matthias Teufe¹b^b, Torsten Beck^b, Christof Burgstahler^b, Steffen Schröder^b, Claus D. Claussen^a, Andreas F. Kopp^{a,a} ^aDepartnesi of Diaposilic Balology, Berhard Kath-Universit, Rope-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, Rope-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-Universit, People-Sofer-Six 3, 2005 Taebage, Germany ^bDepartnesi of Calabolity, Berhard Kath-University, Berhard Kath-University,

Late Enhancement with MDCT

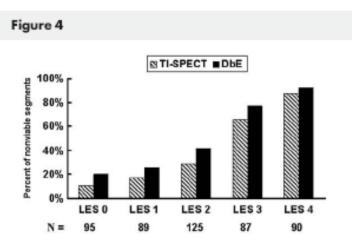
European Journal of Radiology 66 (2008) 127–133 Late enhancement using multidetector row computer tomography: A feasibility study with low dose 80 kV protocol

Anja J. Reimann^a, Axel Kuettner^a, Bernhard Klumpp^a, Martin Heuschmid^a, Felix Schumacher^a, Matthias Teufel^b, Torsten Beck^b, Christof Burgstahler^b, Steffen Schröder^b, Claus D. Claussen^a, Andreas F. Kopp^{a,*}

^a Department of Diagnostic Radiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany ^b Department of Cardiology, Eberhard-Karls-University, Tuebingen, Germany Received 17 July 2006; received in revised form 19 October 2006; accepted 12 April 2007

Se	Sp	NPV	PPV		
78%	100%	100%	97%		

Delayed Time: 5 min Tube Voltage: 80 Kv Tube Current: 420 mA Collimation: 64x0.625 mm


- Gantry Rotaion time: 350 msec
- ECG-gating: modulation dose

Effective Radiation Dose: 1.19 – 1.61 mSv

Regional Left Ventricular Disease: MDCT vs Db-Echo and Tl-SPECT

Identification and viability assessment of infarcted myocardium with late enhancement multidetector computed tomography: Comparison with thallium single photon emission computed tomography and echocardiography

Kuan-Rau Chiou, MD,^{a,d} Chun-Peng Liu, MD,^{a,d} Nan-Jing Peng, MD,^{b,d} Wei-Chun Huang, MD,^{a,d} Shih-Hung Hsiao, MD,^{a,d} Yi-Luan Huang, MD,^{c,d} Kuen-Huang Chen, MD,^{c,d} and Ming-Ting Wu, MD^{c,d} *Taiwan, Republic of China*

Bar graph shows comparison of TI-SPECT and DbE nonviable segments with segmental extent of MDCT-LE. The proportion of norwiable myocardium depicted by TI-SPECT and DbE rises in conjunction with increases in LES (both P < .001).

Late Enhancement 0 = no LE Late Enhancement 1: 1% - 25% Late Enhancement 2: 26% - 50% Late Enhancement 3: 51% - 75% Late Enhancement 4: : >75%

Regional Left Ventricular Disease: MDCT_{LE} and LV Remodelling

European Heart Journal (2008) 29, 490–498 dot10.1093/eurheart#/dom630 CLINICAL RESEARCH

Early validation study of 64-slice multidetector computed tomography for the assessment of myocardial viability and the prediction of left ventricular remodelling after acute myocardial infarction

Akira Sato¹*, Michiaki Hiroe², Toshihiro Nozato¹, Hiroyuki Hikita¹, Yusuke Ito¹, Hirokazu Ohigashi¹, Mieko Tamura¹, Atsushi Takahashi¹, Mitsuaki Isobe³, and Kazutaka Aonuma⁴

"Department of Cardology, Yolosofa Kyosa Hopela, 1-16 Yoregalematice", Yokosta, Japan, "Department of Medicing, Yolosofa Kyosa Hopela, Cardology, Barnatona (Medica), Tologo, Barnatona (Cardology, Barnatona), Tologo, Barnatona, Tologo, Barnatona, Status, Status

Received 36: February 2007) in doed 36 his number 3007) accepted 30: December 2007; Oil his publish about a fp-bit 22 january 2008

0 and 6 Month

Regional Left Ventricular Disease: MDCT_{LE} and LV Remodelling

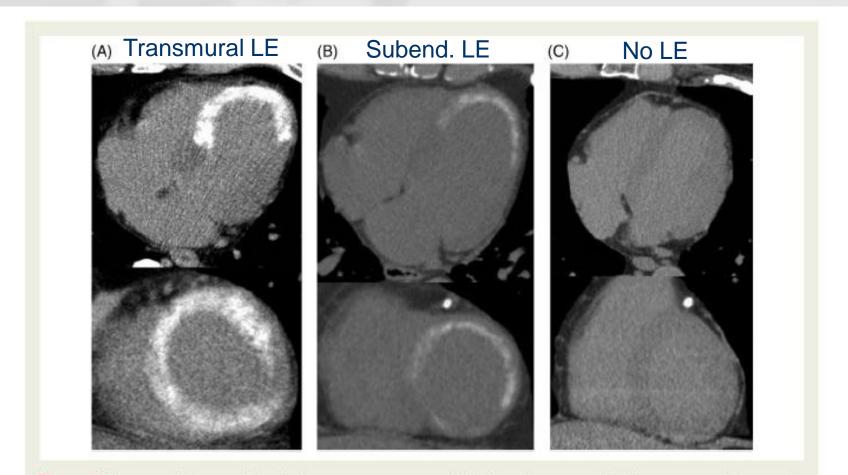


Figure I The myocardial contrast-delayed enhancement patterns were divided into three groups. Multidetector computed tomography images show axial (upper) and short-axis (lower) slices with (A) transmural contrast-delayed enhancement, (B) subendocardial contrast delayed enhancement, and (C) no contrast-delayed enhancement

Regional Left Ventricular Disease: MDCT_{LE} and LV Remodelling

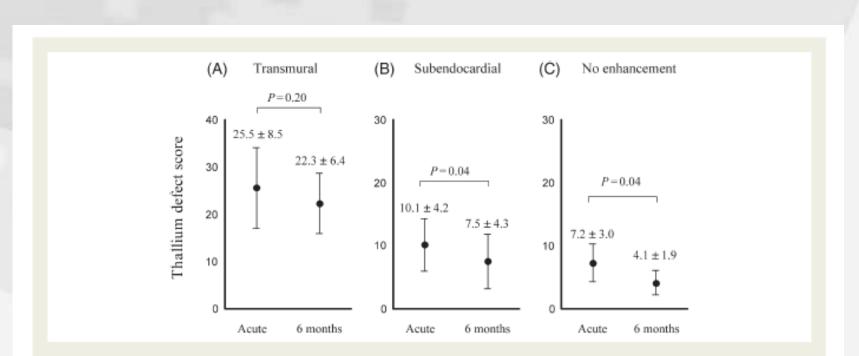


Figure 4 Comparison of the defect scores of thallium-201 between the acute phase and at 6 months according to myocardial contrast-delayed enhancement patterns. Values are expressed as mean \pm SD. (A) transmural enhancement, (B) subendocardial enhancement, and (C) no enhancement

Significant reduction of TL-SPECT score only in subendocardial LE or in no-LE

Regional Left Ventricular Disease: MDCT_{LE} and LV Remodelling

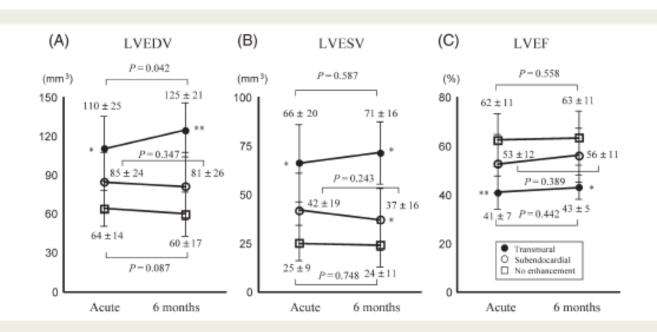


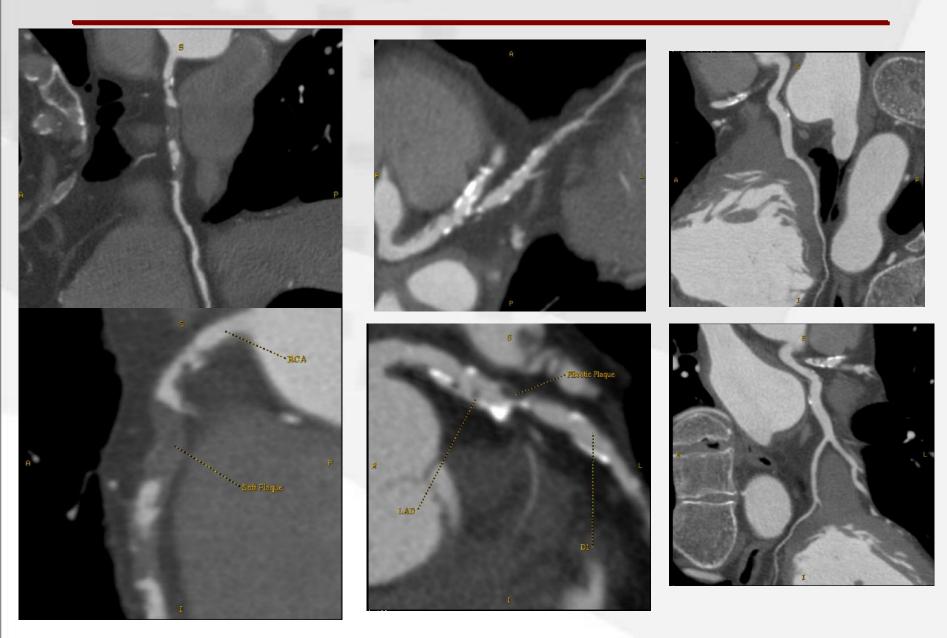
Figure 5 Changes in left ventricular functional parameters from the acute phase to those at 6 months according to myocardial contrast-delayed enhancement patterns. Values are expressed as mean \pm SD. (A) Left ventricular end-diastolic volume, (B) Left ventricular end-systolic volume, and (C) Left ventricular ejection fraction. Solid circles indicate transmural enhancement, open circles indicate subendocardial enhancement, and open squares indicate no enhancement. Asterisks are overall significance between three groups calculated by Jonckheere–Terpstra trend test. *P < 0.0001, **P < 0.0005

Significant increase of LVEDV only in transmural LE

Greater incidence of hospitalization only in transmural LE

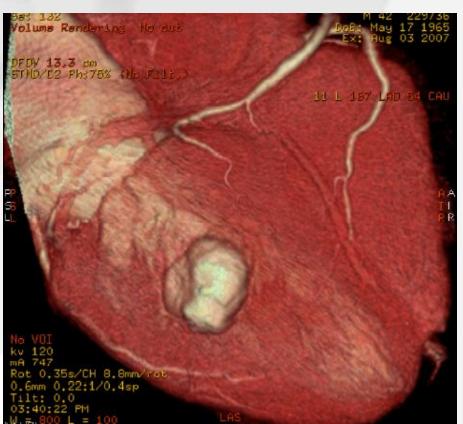
 \mathbb{I}

European Journal of Radiology Extra 54 (2005) 51-54

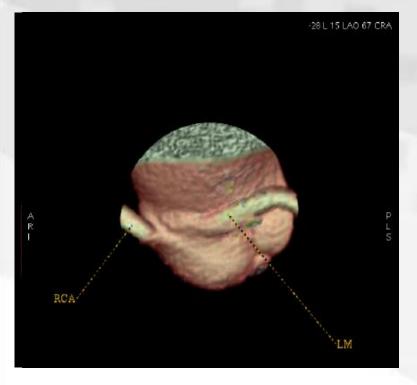

2005) 51-54 http://intl.elsevierhealth.com/journals/eire:

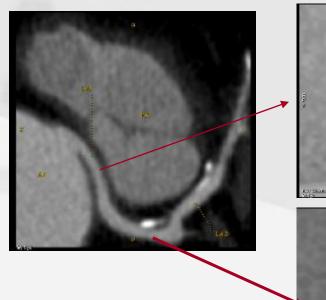
An unusual case of large left ventricular aneurysm: Complementary role of echocardiography and multidetector computed tomography in surgical planning

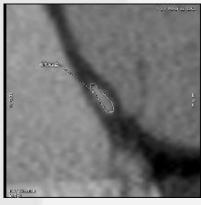

Gianluca Pontone^{a,*}, Daniele Andreini^a, Giovanni Ballerini^a, Giulio Pompilio^a, Francesco Alamanni^a, Enrica Nobili^a, Franco Casazza^b, Mauro Pepi^a, Paolo Biglioli^a ^a Centro Cardiologico Monzino, IRCCS, Ita C. Pares 4, Mine, Italy ^b Cogedate S. Cario, Mina, Italy

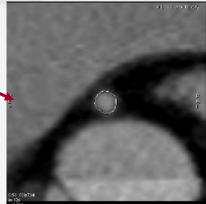

Received 21 December 2004; received in revised form 22 March 2005; accepted 24 March 2005

Male, 65 aa with history of myocardial infarction of inferior wall of LV

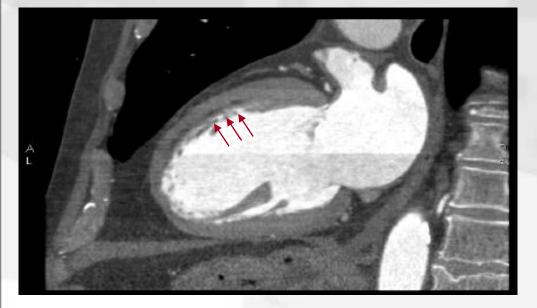


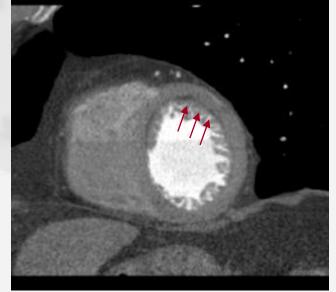

Soft plaque in the proximal RCA and posterior wall left ventricle aneurysm

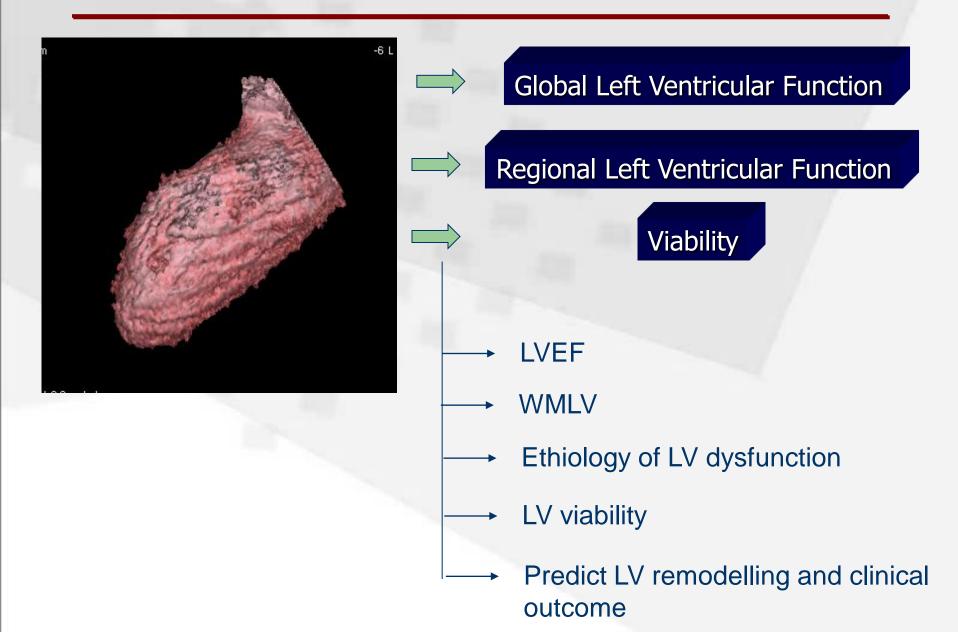




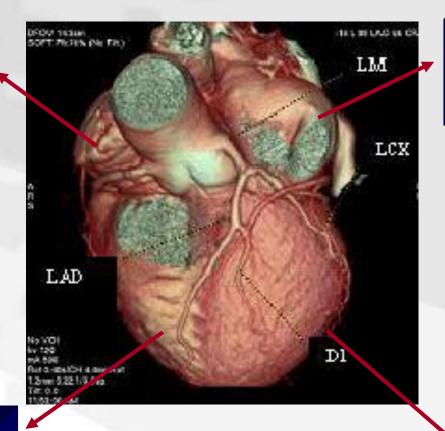
LM origin from RCA







LM origin from RCA


LEFT VENTRICLE: conclusions

SUMMARY

Right Atrium and Cardiac Veins

Right Ventricle

Left Atrium and Pulmonary Veins

Left Ventricle and Aortic root

Right Atrium and Cardiac Veins

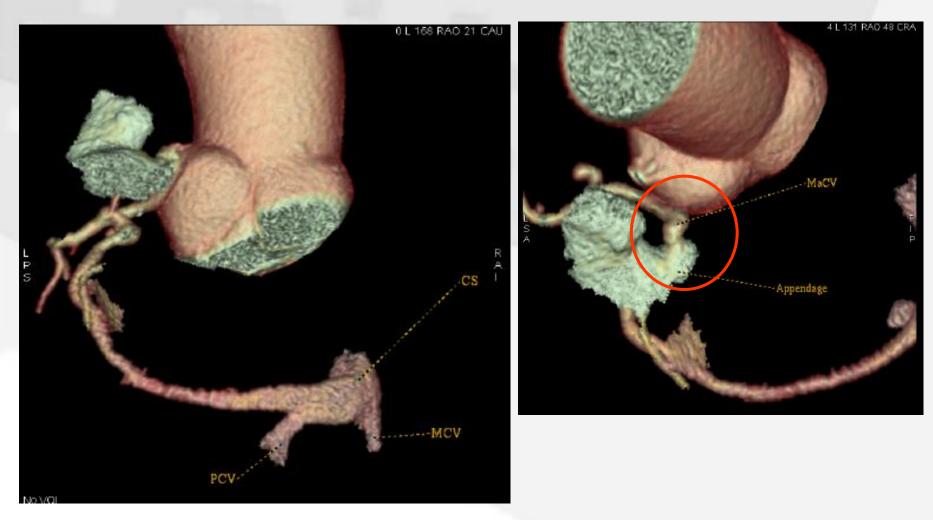
The role of multidetector computer tomography in assessing the cardiac venous circulation in patients with dilated cardiomyopathy

Gianluca Pontone MD, Daniele Andreini MD, Andrea Annoni MD, Alberto Formenti MD, Erika Bertella MD, Saima Mushtaq MD,, Enrica Nobili MD, Francesco Giraldi MD, Giovanni Ballerini MD, Paolo Della Bella MD, Piergiuseppe Agostoni PhD, Mauro Pepi MD

Centro Cardiologico Monzino, IRCCS, Milan, Italy

submitted

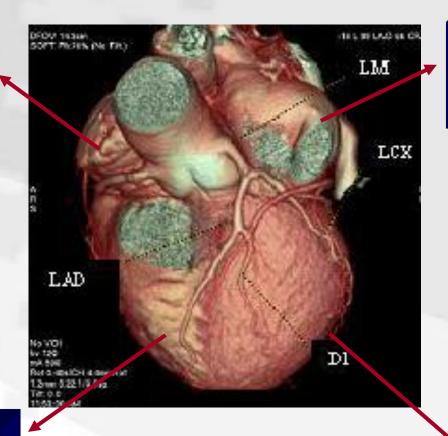
Right Atrium and Cardiac Veins


PATIENTS	CONTROLS	CONTROLS	DCM	DCM
	(No-CAD)	(CAD)	(No-CAD)	(CAD)
Number of pts	64	29	72	27
Vessels, no.	320	145	360	135
Number of visualized vessels, no. (%)	278 (86%)*§&	110 (76%)#	278 (77%)£	86 (64%)

DCM: dilated cardiomyopathy; CAD: coronary artery disease.; *: p<0.01 Controls (No-CAD) vs Controls (CAD); §: p<0.01 Controls (No-CAD) vs DCM (No-CAD); &: p<0.01 Control (No-CAD) vs DCM (CAD); #: p<0.05 Controls (CAD) vs DCM (CAD); £: p<0.01 DCM (No-CAD) vs DCM (CAD).

Ischemic DCM patients present less cardiac veins than other group

Right Atrium and Cardiac Veins: clinical case


Fistula between greta cardiac vein and left atrial appendage

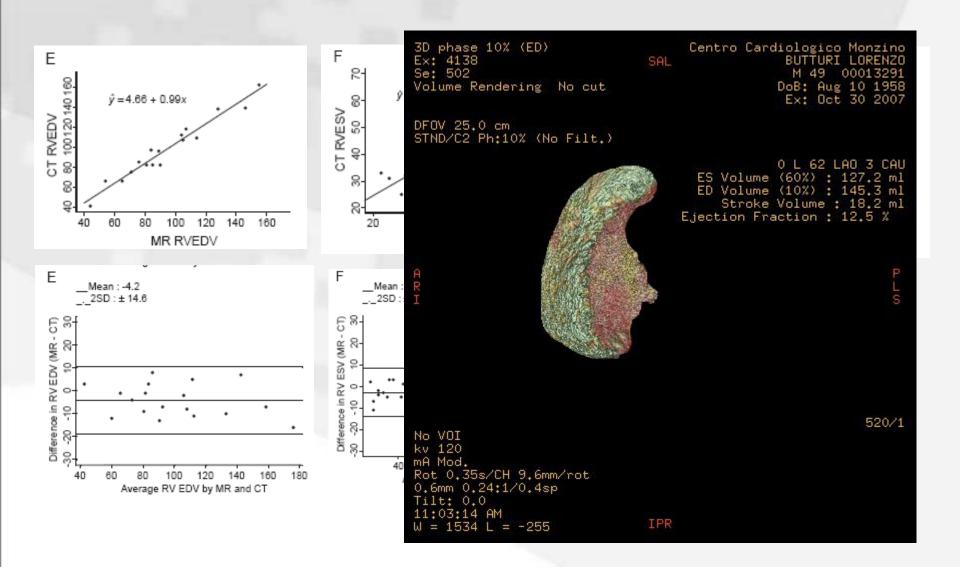
SUMMARY

Right Atrium and Cardiac Veins

Right Ventricle

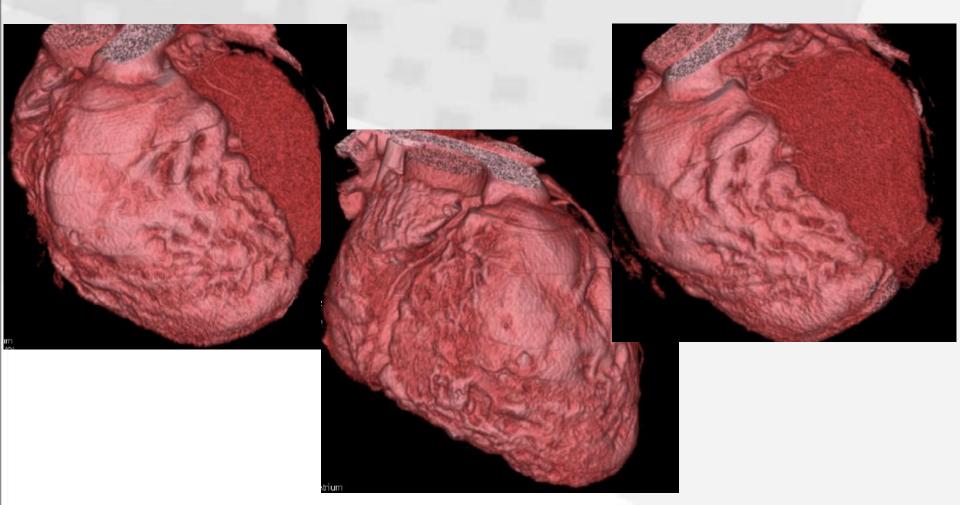
Left Atrium and Pulmonary Veins

Left Ventricle and Aortic root


Right Ventricle

Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance

Subha V. Raman, MD, MSEE, Mona Shah, MD, Beth McCarthy, BSRT, Anne Garcia, BSRT, and Amy K. Ferketich, PhD *Columbus*, OH


(Am Heart J 2006;151:736-44.)

Right Ventricle: function

Right Ventricle: clinical case

Left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy demonstrated by multidetector-row computed tomography. Matsuo S et al. Int J Cardiol. 2007 Feb 14;115(3):e129-31.

RADIOLOGICAL RISK OF MDCT

Estimating Risk of Cancer Associated With Radiation Exposure From 64-Slice Computed Tomography Coronary Angiography

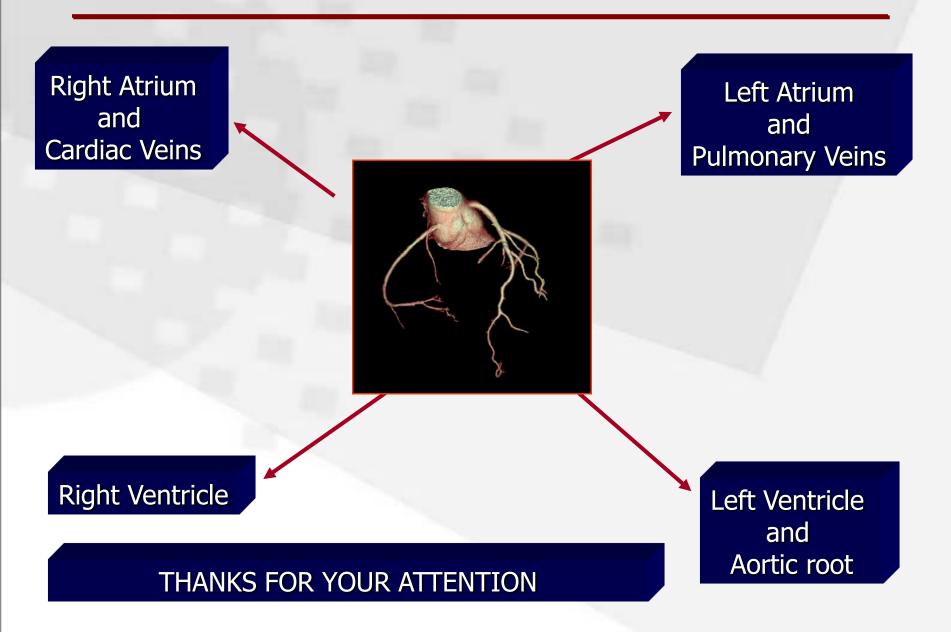
Andrew J. Einstein, MD, PhD Nilena J. Henzlova, MD, PhD Sanjay Rajagopalan, MD

JAMA. 2007;298(3):317-323

LAR (M, 80 y): 0.075% 1 pts in 1338

LAR (F, 20 y): 0.7% 1 pts in 143

Table 1. Doses From the 8 Computed Tomography Coronary Angiography Protocols


				Organ Equivalent Doses, mSv ^a									
Sex	ECTCM	Aorta	Effective Dose, mSv ^b	Thymus	Breast	Lung	Esophagus	Bone	Adrenals	Marrow	Liver	Small Intestine	Stomach
Female	No	No	21	79	77	74	47	29	15	13	12	9	8
Male	No	No	15	29		65	37	24	30	10	22	15	14
Female	Yes	No	14	52	50	48	30	19	10	8	8	6	5
Male	Yes	No	(9)	19		42	24	15	20	7	14	9	9
Female	No	Yes	(29)	114	80	91	77	47	16	21	12	9	8
Male	No	Yes	23	107		90	63	41	31	18	23	16	14
Female	Yes	Yes	19	74	52	59	50	31	10	14	8	6	6
Male	Yes	Yes	15	69		58	41	26	20	12	15	10	9

Abbreviation: ECTCM, electrocardiographically controlled tube current modulation.

^aOrgan equivalent doses reported here only for organs with a dose >10 mSv for standard male or female patient; the doses are displayed here as integers, although more significant ______ figures were retained for calculations.

^bEffective dose determined using International Commission on Radiological Protection Publication 60 tissue weighting factors.¹³

SUMMARY: conclsions

