Terapia antitumorale ed ipertensione arteriosa. Evento non infrequente nella clinica quotidiana. *Come affrontarlo*.

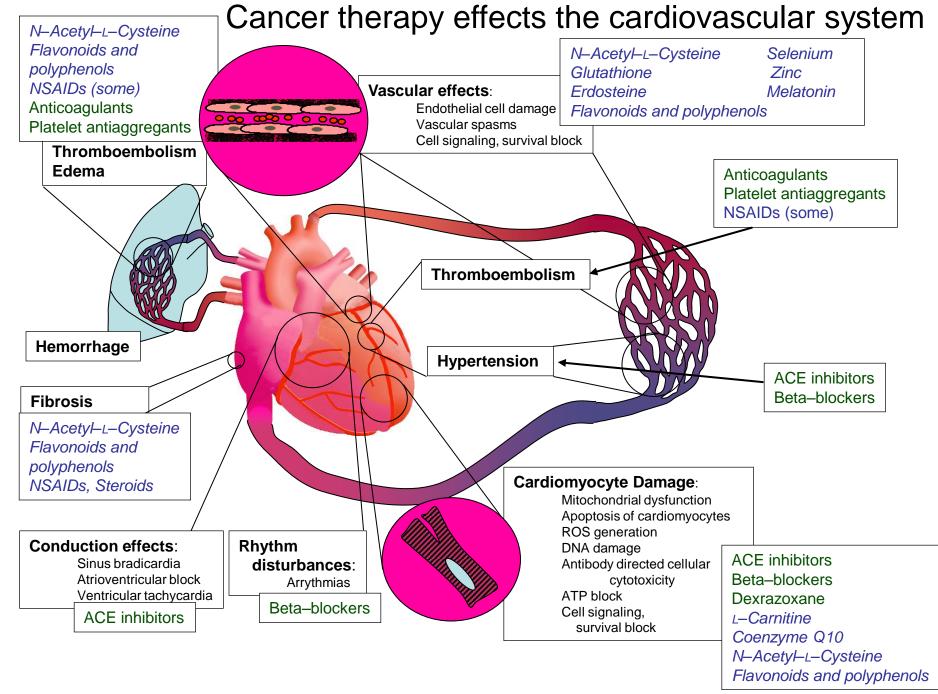
Prof. Douglas Noonan Professore Associato, Università degli Studi dell'Insubria Research & Technology Park, IRCCS Multimedica Clinical Center - Milan - Italy

Cancer therapy effects the cardiovascular system

Anticancer drugs with possible cardiotoxicity

Doxorubicin and other anthracyclines Capecitabine and cytarabine 5–Fluorouracil Paclitaxel and vinca alkaloids Cyclophosphamide TK Inhibitors:

Trastuzumab Imatinib Bevacizumab Sorafenib, sunitinib COX–2 inhibitors Estrogen receptor modulators Irradiation to the thorax

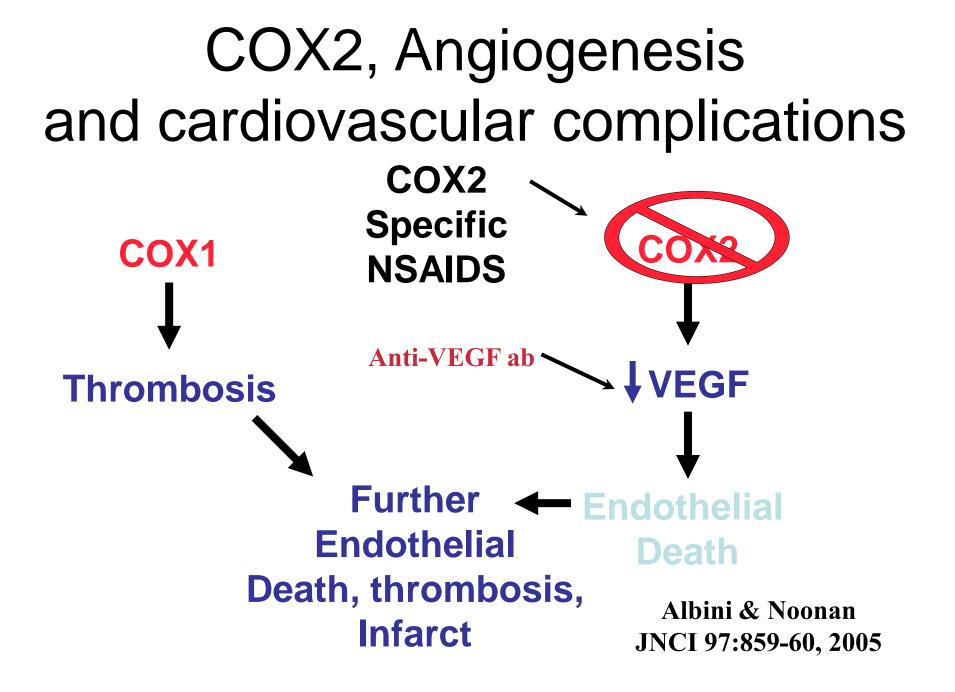

Mechanisms of cardiotoxicity

Mitochondrial dysfunction Apoptosis of cardiomyocytes **ROS** generation **DNA** damage Endothelial cell damage, spasms Antibody directed cellular cytotoxicity ATP block Cell signaling, survival block **Fibrosis** Hypertension Sinus bradicardia atrium-ventricular block ventricular tachycardia Arrythmias thromboembolism

Albini et al, JNCI 2010 Ferrari et al, Current Drug Targets, 2011

Potential protective agents

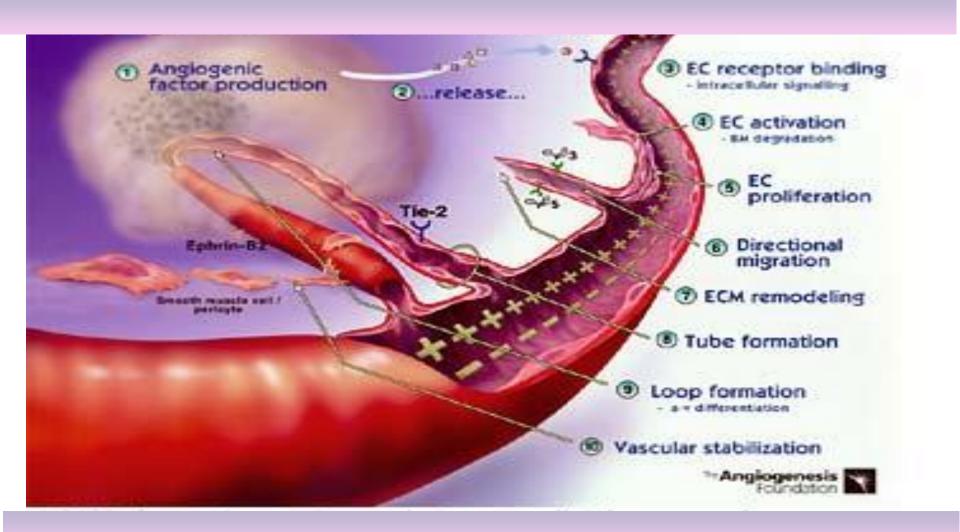
Lipoic Acid Melatonin Coenzyme Q10 Polyphenolic compounds Resveratrol monoHER Curcumin Quercetin Pycnogenol Genisten Naringenin Garlic organosulfur compounds Cruceriferous Glucosinolates Sulforaphane glucoraphanin Grape Seed Proanthocyanin Extract Other anthocyanins Calceolarioside



Albini et al, JNCI, Jan 10 2010- Cardio-oncological prevention

The down-side of prevention-Thrombosis by COX2 inhibitors: Adverse Cardiovascular Events

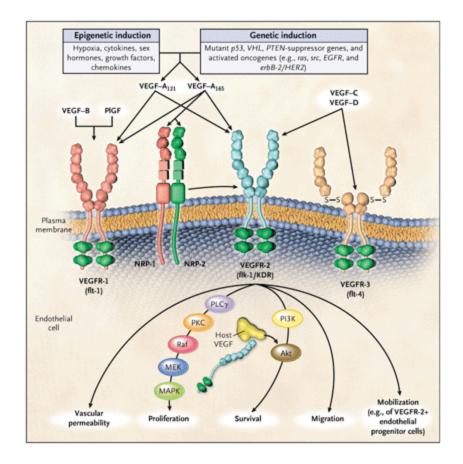
Vioxx


- Cardiovascular Events Associated with Rofecoxib in a Colorectal Adenoma Chemoprevention Trial
 - Robert S. Bresalier, N Eng J. Medicine 2005
- Celebrex
- Celecoxib for the Prevention of Colorectal Adenomatous Polyps
 - Nadir Arber, N Eng J. Medicine 2006
- Celecoxib for the Prevention of Sporadic Colorectal Adenomas
 - Monica M. Bertagnolli, N Engl J Med. 2006
- Effect of Celecoxib on Cardiovascular Events and Blood Pressure in Two Trials for the Prevention of Colorectal Adenomas
 - Scott D. Solomon, Circulation. 2006

Tumor Progression \bigcirc **Tumor Cell** O apoptotic Cell $\left(\right) \left(\right)$ 00 \mathbf{O} $\mathbf{0}$ 00 \mathbf{O} 000 Tumor Transformation **Quiescent Tumor Proliferation Evasion of** (proliferation=death) Immune 00 Inflammation **Surveillance** Vascular 00 Metastatic Dissemination 00 0 **Metastatic** Extravasation Lymphatic Angiogenesis Metastasis Invasion **Colonization** of Matrix and Vessels

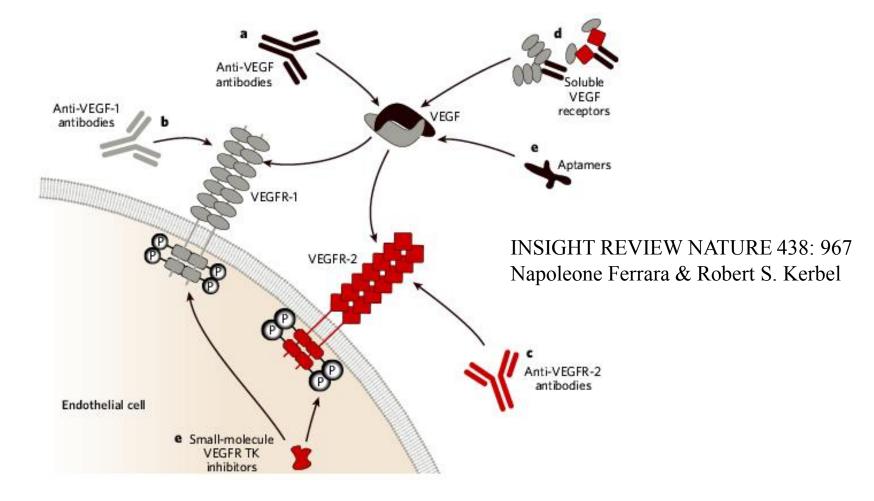
normal Cell

Angiogenesis: cascade of events



Angiogenic Factors Produced by Tumor Cells

- •VEGFs
- •bFGFs
- •HGF
- •EGFs
- •IL-8
- •PlGF
- •PDGF


- IGF-I
- TGF-α
- TGF-β
- TNF- α
- GM-CSF
- Angiopoietins
- Angiogenin

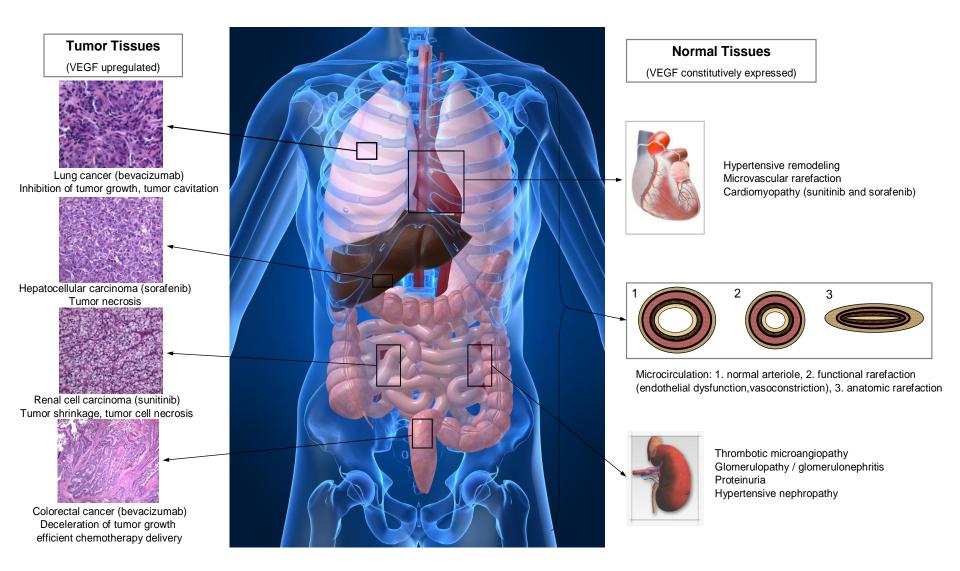
The Family of VEGF Molecules and Receptors

Tumor Angiogenesis-Robert Kerbel- NEJM May 8, 2008

Concepts of angiogenesis inhibition in the clinic

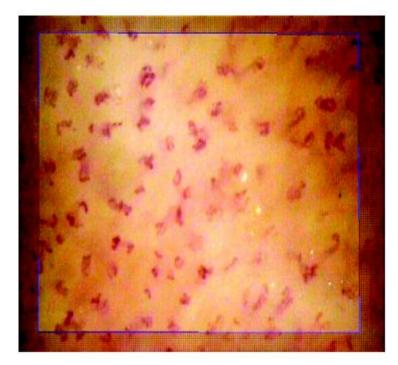
Angiogenesis inhibitors approved for clinical use

	Place	Disease
Velcade (Bortezomib)	U.S. (FDA)	Multiple myeloma
Thalidomide	Australia	Multiple myeloma
* Avastin (Bevacizumab)	U.S. (FDA)	Colorectal cancer
Tarceva (Erlotinib)	U.S. (FDA)	Lung cancer
*Avastin	Switzerland	Colorectal cancer
*Macugen	U.S. (FDA)	Macular degeneration
*Avastin	European Union (25 countries)	Colorectal cancer
* Endostatin (Endostar)	China (SFDA)	Lung cancer
* Nexavar (Sorafenib)	U.S. (FDA)	Kidney cancer
Revlimid	U.S. (FDA)	Myelodysplastic sindrome
* Sutent (Sunitinib)	U.S. (FDA)	Gastric (GIST), Kidney cancer
*Lucentis	U.S. (FDA)	Macular degeneration
*Avastin	U.S. (FDA)	Lung cancer and breast cancer
	 (Bortezomib) Thalidomide *Avastin (Bevacizumab) Tarceva (Erlotinib) *Avastin *Macugen *Macugen *Avastin *Macugen *Avastin *Nexavar (Sorafenib) Revlimid *Sutent (Sunitinib) *Lucentis 	(Bortezomib)AustraliaThalidomideAustralia*AvastinU.S. (FDA)(Bevacizumab)U.S. (FDA)Tarceva (Erlotinib)U.S. (FDA)*AvastinSwitzerland*MacugenU.S. (FDA)*AvastinEuropean Union (25 countries)*Endostatin (Endostar)China (SFDA)*Nexavar (Sorafenib)U.S. (FDA)RevlimidU.S. (FDA)*LucentisU.S. (FDA)*AvastinU.S. (FDA)*AvastinU.S. (FDA)

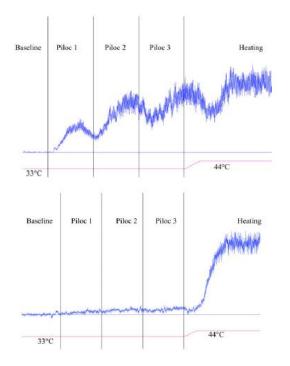

* "pure" antiangiogenic agents

Cardiotoxicity of targeted drugs

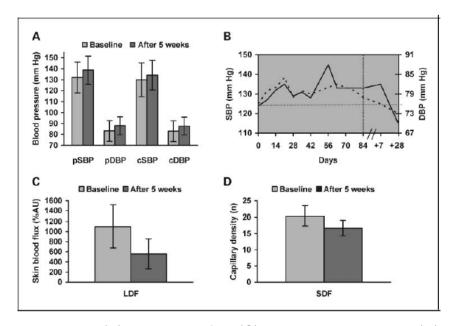
Agent	Class	Tyrosine kinase target(s)	Cancer target(s)	Other toxicity
Drugs with kno	own or lik	ely cardiotoxicity*		
Trastuzumab (Herceptin)	mAb	ERBB2	ERBB2* breast cancer	Infusion reactions, neutropaenia
lmatinib (Gleevec)	ткі	ABL1/2, PDGFRα/β, KIT	CML, Ph ⁺ B-ALL, CMML, CEL, GIST	Oedema, nausea, myelosuppression, immunosuppression (?)
Dasatinib (Sprycel)	ткі	ABL1/2, PDGFRα/β, KIT, Src family	CML	Myelosuppression, oedema, pleural/ pericardial effusion, panniculitis, QT prolongation, bleeding
Nilotibib (Tasigna)	ткі	ABL1/2, PDGFRα/β, KIT	CML	Myelosuppression, hyperbilirubinaemia, rash, QT prolongation
Sunitinib (Sutent)	ткі	VEGFR1–3, KIT, PDGFRα/ β, RET, CSF1R, FLT3	Renal cell carcinoma, GIST	Haemorrhage, hypertension, adrenal dysfunction, hypothyroidism
Sorafenib (Nexavar)	ткі	VEGFR2, PDGFRβ, KIT, FLT3, RAF1, BRAF	Renal cell carcinoma, melanoma	Skin rash, hypertension, haemorrhage, acute coronary syndromes
Bevacizumab (Avastin)	mAb	VEGFA	Colorectal cancer, NSCLC	Haemorrhage, gastrointestinal perforation, poor wound healing, hypertension, neutropaenia, arterial thromboembolism
Drugs with low	v cardioto	oxicity		
Lapatinib (Tykerb)	ткі	EGFR, ERBB2	Breast cancer	Skin rash, diarrhoea
Gefitinib (Iressa)	TKI	EGFR	NSCLC	Skin rash, diarrhoea, nausea, interstitial lung disease
Erlotinib (Tarceva)	TKI	EGFR	NSCLC, pancreatic cancer	Skin rash, diarrhoea, nausea, interstitial lung disease
Cetuximab (Erbitux)	mAb	EGFR	Colorectal cancer, squamous cell carcinoma of head/neck	Skin rash, infusion reactions, interstitial lung disease, hypomagnesaemia
Panitumumab	mAb	EGFR	Colorectal cancer	Skin rash

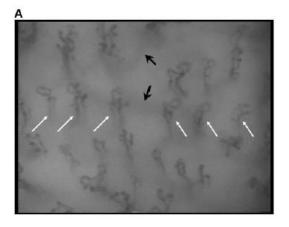

*Rate of cardiotoxicity is known only for trastuzumab and lapatinib. B-ALL, B-cell acute lymphoblastic leukaemia; CEL, chronic eosinophilic leukaemia; CML, chronic myeloid leukaemia; CMML, chronic myelomonocytic leukaemia; CSF1R, colony-stimulating factor 1 receptor; EGFR, epidermal growth factor receptor; FLT3, FMS-related tyrosine kinase 3; GIST, gastrointestinal stromal tumour; mAb, humanized monoclonal antibody; NSCLC, non-small-cell lung cancer; PDGFR, platelet-derived growth factor receptor; Ph; Philadelphia chromosome positive; QT prolongation, prolongation of the QT interval on electrocardiogram that may predispose to arrhythmia; RET, rearranged during transfection; TKI, tyrosine kinase inhibitor; VEGFR, vascular endothelial growth factor receptor.

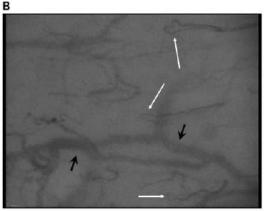
Systemic Effects of Anti-VEGF Therapy


Vaklavos et al, Oncologist, 2010

Crucial role for microcirculation in the rising of blood pressure following angiogenesis inhibition by bevacizumab

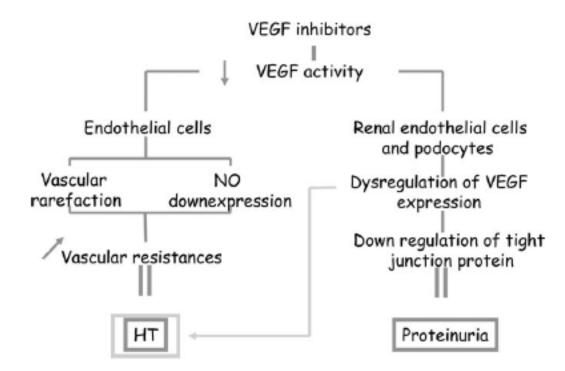

Typical video microscopic image of capillaries in the phalanx skin during venous occlusion. The blue rectangle represents a calibrated 1-mm² surface. The structural capillary density is the number of capillary structures in this surface area.




Typical examples of laser Doppler recordings before (upper figure, before treatment) and after a 6-month bevacizumab treatment (lower figure, altered response). Vertical lines indicate the successive administrations of pilocarpine. The red line represents the skin temperature maintained at 33°C during baseline and pilocarpine administrations and heated at 44°C for recording of the maximal skin flow under local vasodilation.

Hypertension and rarefaction during treatment with telatinib

Blood pressure (A), skin blood flux (C), and capillary density (D) results at baseline and after 5 wk of treatment with telatinib. B, mean systolic blood pressure (continuous line) and mean diastolic blood pressure (dashed line) before treatment, weekly during treatment, and after discontinuation of telatinib treatment. A horizontal dashed line was added at baseline systolic blood pressure and baseline diastolic blood pressure for facilitation of reading. Left from the vertical line blood pressures measured in the first 84 d of treatment. Right from the vertical line blood pressures measured 7 and 28 d after discontinuation of treatment. pSBP, peripheral systolic blood pressure; cDBP, central diastolic blood pressure; cDBP, central of pressure; cDBP, central diastolic blood pressure; n, number.


SDF images demonstrating visible capillary loops of a representative patient. A, at baseline. B, after 5wk of telatinib treatment. Black arrows, larger venules; white arrows, individual superficial capillary loops.

Steeghs et al. Clin Cancer Res 2008; 14: 3470-76

Hypertension during antiangiogenic therapy: friend or foe?

- Hypertension is one of the most frequent side-effects of systemic inhibition angiogenesis signaling.
- Its incidence and severity are dependent on the type of drugs, dose, and schedule used.
- The recognition of this side effect is an important issue since poorly controlled hypertension could lead to serious cardiovascular events.
- On the other hand, it may be a predictive factor of oncologic response

Mechanisms of hypertension induced by angiogenic inhibitors

The therapeutic low free VEGF activity contributes to the increase of systemic vascular resistances as a result of vascular rarefaction and down-regulation of nitric oxide production, dysregulation of renal endothelial cells and podocyte VEGF expression leading to thrombotic microangiopathy and thereby hypertension.

Incidence of VEGF inhibitors-associated hypertension compared with controls in randomized phase III clinical trials

Disease	Author	Regimen	Patient, n	Hypertension (%)	
				All grades	Grade 3/4
Bevacizumab					
mCRC	Hurwitz et al. [5]	IFL	397	8.3	2.3
		IFL + bevacizumab, 5 mg/kg	393	22.4	8.3
	Hurwitz et al. [6]	Placebo + IFL	98	14.3	3.1
		Fluorouracil + leucovorin + bevacizumab, 5 mg/kg	109	33.9	18.3
	Giantonio et al. [7]	FOLFOX4 + bevacizumab, 10 mg/kg	287	NA	6.2
		FOLFOX4	285	NA	1.8
		Bevacizumab, 10 mg/kg	234	NA	7.3
mRCC	Yang et al. [8]	Placebo	40	2.5	0
		Placebo + bevacizumab, 3 mg/kg	37	2.7	0
		Placebo + bevacizumab, 10 mg/kg	39	35.9	20.5
	Escudier et al. [9]	Placebo + interferon alpha	322	9	<1
		Interferon alpha + bevacizumab, 10 mg/kg	327	26	3
	Miles et al. [14]	Docetaxel + placebo	734	NA	1.3
		Docetaxel + bevacizumab, 7.5 mg/kg		NA	0.4
		Docetaxel + bevacizumab, 15 mg/kg		NA	3.2
NSCLC	Sandler et al. [10]	Carboplatin + paclitaxel	444	NA	0.7
		Carboplatin + paclitaxel + bevacizumab, 15 mg/kg	434	NA	7
	Manegold et al. [17]	Placebo	347	NA	2
	-	Bevacizumab, 7.5 mg/kg	345	NA	6
		Bevacizumab, 15 mg/kg	351	NA	9
mBC	Miller et al. [12]	Capecitabine	215	2.4	0.5
		Capecitabine + bevacizumab, 15 mg/kg	247	33.5	17.9
	Miller et al. [13]	Paclitaxel	346	NA	0
		Paclitaxel + bevacizumab, 10 mg/kg	365	NA	14.8
Sunitinib					
GIST	Demetri et al. [15]	Placebo	105	4	0
		Sunitinib, 50 mg/day (4 weeks on, 2 weeks off)	207	11	3
mRCC	Motzer et al. [16]	Interferon	360	1	1
		Sunitinib, 50 mg/day (4 weeks on, 2 weeks off)	375	24	8
Sorafenib					
mRCC	Escudier et al. [17]	Placebo	452	2	<1
		Sorafenib, 400 mg twice daily	451	17	4
Vatalanib					
mCRC	Hecht et al. [18]	Placebo + FOLFOX	583	NA	5.9
		Vatalanib + FOLFOX	585	NA	20.6
	Kohne et al. [19]	Placebo + FOLFOX	855	NA	5.9
		Vatalanib + FOLFOX		NA	20.6

VEGF, vascular endothelial growth factor; mBC, metastatic breast cancer; mCRC, metastatic colorectal cancer; NA, not available; IFL, irinotecan, fluorouracil, leucovorin; mRCC, metastatic renal cell carcinoma; NSCLC, non-small-cell lung cancer; GIST, gastrointestinal stromal tumor.

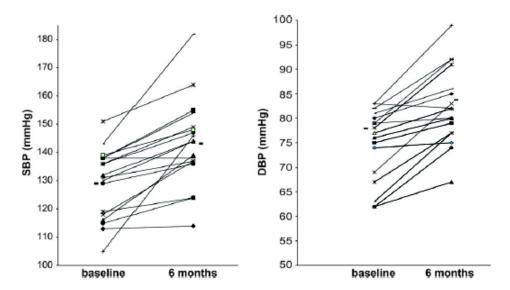
Izzedine H et al. Annals of Oncology 2009; 20: 807-815

Bevacizumab-related hypertension in patients with metastatic colorectal cancer receiving bevacizumab as first-line therapy in combination with irinotecan and 5-FU in an Italian study

- patient characteristics-

	Patients with bevacizumab-	Patients without bevacizumab-	Р
	related hypertension	related hypertension	
M/F	3/5	22/9	
Age at diagnosis (range)	53 years (48–70)	58 years (30-69)	
Primary tumor (colon/rectum)	6/2	24/7	
ECOG PS 0-1	5 (62.5%)	20 (64.5%)	
ECOG PS 2–3	3 (37.5%)	11 (35.5%)	
Medical history of arterial hypertension	2 (25%)	9 (29%)	
Antihypertensive treatment			
Diuretics/beta-adrenoceptor blocking drugs	5 (50%)	5 (55%)	
ACE inhibitors	4 (40%)	3 (33%)	
Others	1 (10%)	1 (12%)	
Previous adjuvant chemotherapy	3 (37.5%)	13 (42%)	
Primary tumor (colon/rectum)	6/2	24/7	
Sites of metastasis (%)			
Liver	6 (43%)	26 (60%)	
Lung	2 (14%)	6 (14%)	
Peritoneum	1 (7%)	4 (9%)	
Distant lymph nodes	4 (29%)	6 (14%)	
Bone	1 (7%)	1 (2%)	
Baseline CEA			
>30 ng/ml	2 (25%)	10 (32%)	
<30	5 (63%)	18 (58%)	
Not done	1 (12%)	3 (10%)	
Median duration of treatment (weeks)	56.4	12.2	
Dose administered (percentage of the planned dose)			
Irinotecan/5-FU bolus/infusional 5-FU	75/90/90	80/90/90	
Bevacizumab	100	100	
Second-line chemotherapy (n)	6 (75%)	28 (90%)	
Oxaliplatin based	5 (83%)	24 (86%)	
Others	1 (17%)	4 (14%)	
Response rate (%)	6/8 (75%)	10/31 (32%)	0.04
Median PFS (months)	14.5	3.1	0.04
Median OS (months)	Not reached	15.1	

Only statistically significant P values have been indicated.

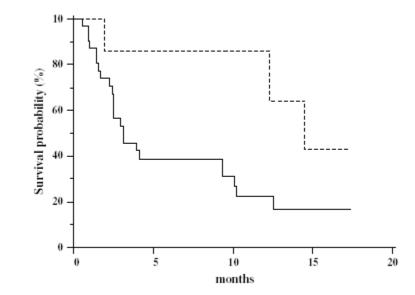

ECOG PS, Eastern Cooperative Oncology Group performance status; CEA, carcinoembryonic antigen; 5-FU, 5-fluorouracil; PFS, progression-free survival; OS, overall survival.

Scartozzi M et al. Annals of oncology 2009; 20:227-230

Bevacizumab-related hypertension and microcirculation damage in patients with metastatic colorectal cancer treated with bevacizumab in a French study - patient characteristics-

	Mean ± SD (range)
Age (years)	59 ± 9 (45-79)
Weight (kg)	74 ± 75 (42-104)
Body mass index (kg/m ²)	$26.4 \pm 4.8 \; (18.8 35.1)$
Serum creatinine (µmol/l)	78 ± 18
Serum glucose (g/l)	1.16 ± 0.3
Bevacizumab cumulative dose (g)	$3.16 \pm 0.9 \ (1.57{-}4.8)$

SD, standard deviation.



Scatter plot of systolic blood pressure (SBP) and diastolic blood pressure (DBP) at baseline and after 6 months of treatment with bevacizumab.

Antiangiogenic therapy for cancer: is hypertension a good sign?

Arterial hypertension occurring during anti-angiogenic therapy has been correlated with the biological inhibition of angiogenesis-related pathways and, given its molecular link with anti-angiogenic mechanisms, it may represent a possible clinical marker for treatment efficacy, analogously to what has been demonstrated for skin rush.

Antiangiogenic therapy for cancer: is hypertension a good sign? -the data-

Median progression-free survival of colorectal cancer patients with grades 2–3 bevacizumabrelated arterial hypertension and without bevacizumab-related arterial hypertension. Patients with grades 2–3 bevacizumab-related arterial hypertension (------) and without bevacizumabrelated arterial hypertension (------) (P = 0.04).

Summary of the Italian study

Among patients with bevacizumab-related hypertension, a significant improvement in global clinical outcome, particularly in response rate and progression free survival, was observed.

It can be speculated that these results could be due to:

- bevacizumab-related hypertension may involve different biological pathways in comparison with other forms of hypertension;

If confirmed, these observation imply that the identification of a reliable clinical factor such as grades 2-3 arterial hypertension developing during bevacizumab therapy may constitute an early indicator of antitumor activity, whereas lack of this side-effect could represent an important warning of lack of activity and may ultimately suggest an early change in treatment strategy.

Hypertension at ASCO 2010

- Brd. 19G Pulmonary hypertension (PH) in patients (pts) with CML treated with tyrosine kinase inhibitors (TKIs). (Abstract #6597)
- S. Gaballa, A. Al-Kali, H. Kantarjian, E. Jabbour, A. Quintas-Cardama, M. Ayoubi, G. Borthakur, S. M. O'Brien, J. E. Cortes (pag 96)

Brd. 6H Correlation between bevacizumab-related hypertension and response in mCRC patients. (Abstract #3581)

- A. De Stefano, L. Cannella, C. Carlomagno, A. Crispo, R. Bianco, R. Marciano, S. Pepe, S. De Placido (pag 260)
- Brd. 5D A clinical and biological profile to predict risk of development of hypertension in patients with non-clear cell renal cell carcinoma treated with sunitinib. (Abstract #4601)
- N. A. Ilias-Khan, A. Y. Khakoo, N. M. Tannir
- Brd. 53B Pharmacoepidemiology of clinically relevant hypothyroidism and hypertension from sunitinib and sorafenib. (Abstract #9149)
- C. M. Walko, R. E. Aubert, N. M. La-Beck, G. Hawk, V. Herrera, H. Kourlas, R. S. Epstein, H. L. McLeod
- Brd. 8H Role of VEGF and VEGFR2 single nucleotide polymorphisms (SNPs) in predicting treatment-induced hypertension (HTN) and clinical outcome (CO) in metastatic clear cell RCC (mccRCC) patients (pts) treated with sunitinib.
- (Abstract #4629)
- J. J. Kim, S. A. Vaziri, P. Elson, B. I. Rini, A. Patel, N. S. Basappa, M. Ganapathi,

- Brd. 51B Sunitinib (SU)-related hypertension in a randomized placebo (P)-controlled trial of GIST patients (pts). (Abstract #10059)
- M. Ewer, T. M. Suter, D. J. Lenihan, L. Niculescu, A. Breazna, R. J. Motzer, G. D. Demetri
- Brd. 11A Analysis of early hypertension (HTN) and clinical outcome with bevacizumab (BV). (Abstract #3039)
- H. Hurwitz, P. S. Douglas, J. P. Middleton, G. W. Sledge, D. H. Johnson, D. A. Reardon, D. Chen, O. Rosen
- Brd. 5D A clinical and biological profile to predict risk of development of hypertension in patients with non-clear cell renal cell carcinoma treated with
- sunitinib. (Abstract #4601)
- N. A. Ilias-Khan, A. Y. Khakoo, N. M. Tannir
- Brd. 5E Risk of congestive heart failure with VEGFtargeted therapy: A systematic review and meta-analysis of clinical trials. (Abstract #4602)
- F. A. Schutz, Y. Je, G. R. Azzi, T. K. Choueiri pag 361
- Hemorrages
- Brd. 44F Baseline (BL) radiographic characteristics and severe pulmonary hemorrhage (SPH) in bevacizumab (BV)-treated non-small cell lung cancer (NSCLC) patients (pt): Results from ARIES, an observational cohort study
- (OCS). (Abstract #7619)
- P. Kumar, N. A. Fischbach, J. R. Brahmer, D. R. Spigel, S. Beatty, S. Teng, E. D. Flick, A. Sing, T. J. Lynch, ARIES Investigators

Antiangiogenic therapy for cancer: is hypertension a good sign?

- Hypertension might be a good sign of oncologic response, but MUST be TREATED!
- If the oncologist suggests increasing the dose until the patient has hypertension, SAY NO! There is to date no cause-effect data

Significance of VEGF-signaling inhibition-induced proteinuria

Proteinuria can be a major clue to underlying renal disease or a transient finding in those patients. The onset of urinary protein excretion is of importance because proteinuria is a prognostic marker and an independent risk factor for cardiovascular diseases.

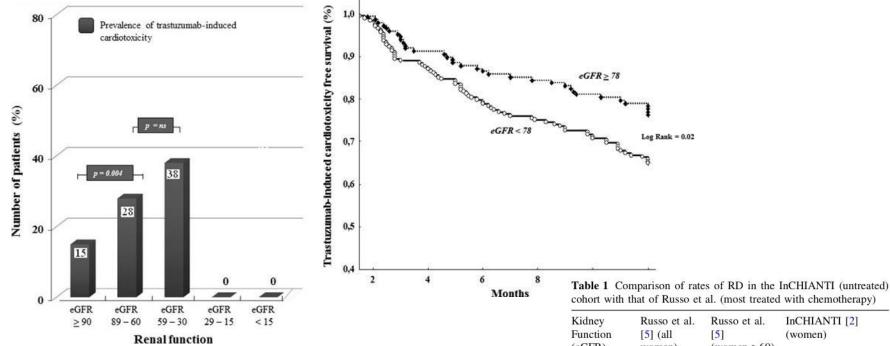
Proteinuria induced by VEGF signaling inhibition

Ū,	able 2 – Incidence of VEGF-targeted therapy-associated proteinuria compared to controls in selected randomised phase II/III
	inical trials,

Disease	Author	Regimen	Patient, n	Protein	nuria (%)
				All grades	Grade 3/4
mCRC	Hurwitz et al., 2004	Irinotecan, Fluorouracil, leucovorin	397	21.7	0.8
		IFL + Bevacizumab 5 mg/kg	393	26.5	0.8
	Hurwitz et al., 2005	Fluorouracil + leucovorin + Placebo	98	25.1	0
		Fluorouracil + leucovorin + Bevacizumab 5 mg/kg	109	34.9	1.8
	Giantonio et al., 2007	FOLFOX4 + Bevacizumab 10 mg/kg	287	NA	0.7
		FOLFOX4	285	NA	0
	Tang et al., 2008	VEGF Trap 4 mg/kg every 2 weeks	234 51	NA 49	0 7.8
mRCC	Yang et al., 2003	Placebo	40	15	0
IIIKCC	Tang et al., 2005	Placebo + Bevacizumab 3 mg/kg	37	15	2
		Placebo + Bevacizumab 10 mg/kg	39	25	3
	Motzer et al., 2007	Interferon alpha	375	NA	NA
	Motzer et al., 2007	Sunitinib 50 mg once daily for 4 weeks	375	NA	NA
	Escudier et al., 2007	Placebo + Interferon alpha	322	3	0
		Interferon alpha + Bevacizumab 10 mg/kg	327	18	7
	Escudier et al., 2007	Placebo	452	NA	NA
		Sorafenib 400 mg twice daily	451	NA	NA
	Rini et al., 2008	Interferon alpha	349	NA	0
		Interferon alpha + Bevacizumab 10 mg/kg	366	NA	15
	Hutson et al., 2007	Placebo	27	NA	NA
		Pazopanib 800 mg daily		NA	NA
	Rixe et al., 2007	Axitinib 5 mg twice daily	52	36.7	0
	Sridhar et al., 2007	AZD2171 45 mg daily	37	NA	NA
NSCLC	Sandler et al., 2006	Carboplatin + Paclitaxel	444	NA	0
		Carboplatin + Paclitaxel + Bevacizumab 15 mg/kg	434	NA	3.1
	Massarelli et al., 2007	VEGF Trap 4 mg/kg every 2 weeks	33	NA	9
mBC	Miller et al., 2005	Capecitabine	215	7.4	0
		Capecitabine + Bevacizumab 15 mg/kg	247	25.3	0.9
	Miller et al., 2007	Paclitaxel	346	NA	0
		Paclitaxel + Bevacizumab 10 mg/kg	365	NA	3.5
Ad TC	Cohen et al., 2008	Axitinib 5 mg twice daily	60	18	5
AdPC	Spano et al., 2008	Gemcitabine	34	NA	0
		Gemcitabine + Axitinib 5 mg twice daily	69	NA	0
Hepatoma	Cheng et al., 2009	Placebo	76	NA	NA
	-	Sorafenib 400 mg twice daily	150	NA	NA
EOC	Tew et al., 2007	VEGF Trap 2 or 4 mg/kg every 2 weeks	162	7	4

mCRC, metastatic colorectal cancer; NSCLC, non-small cell lung cancer; ARMD, age-related macular degeneration; GIST, gastrointestinal stromal turnour; mBC, metastatic breast cancer; mRCC, metastatic renal cell carcinoma; AdTC, advanced thyroid cancer; AdPC, advanced pancreatic cancer; EOC, epithelial ovarian cancer; NA, not available.

Incidence of kidney diseases in anti-VEGF-treated patients


			dney diseases in anti-VEGF-treated	-		Wide on his sec for his se	Tollow on a	Generation discontinuation	Def
Disease	e Targeted therapy				roteinuria	Kidney biopsy findings	Follow-up after anti-VEGF discontinuation		Ref.
	Agent	Dose	and/or other previous or concomitant therapies	Onset	NCI Grade (g'24 h)		Month	Proteinuria Grade (g/day)	
RCC	BVZ	10 mg/kg	Nephrectomy IFN-a	2 weeks	Grade 3 (6g)	Glomerular TMA and IgA ICGN	2	Grade 2 (2.63)	34
RCC	BVZ	N/A	Nephrectomy, Diabetes IFN-x	9 months	Grade 2 (1.8)	Glomerular TMA	16	Grade 2 (1.8)	35
RCC	BVZ	N/A	FN-a	7 months	Grade 1/2	Glomerular TMA	N/A	N/A	35
NSCLC	BVZ	7.5 mg/kg	Carboplatin/paclitaxel	N/A	Grade 4	Cryoglobulinemic GN	N/A	N/A	39
BC	BVZ	15 mg/kg	CKD Capecitabine/Pamidronate	N/A	Grade 4	Collapsing GN	N/A	N/A	15
PC	BVZ	5 mg/kg	Gemcitabine/Capecitabine	1 month	Grade 4 (9.6)	Proliferative ICGN	9	Grade 1 (0.4)	40
HC	BVZ	7.5 mg/kg	Unremarkable	9 months	Grade 2 (3.4)	Glomerular TMA	9	Grade 2 (1.7)	36
HC	BVZ	7.5 mg/kg		3 months	Grade 2 (2.7)	Glomerular TMA	3	Grade 0-1 (0.03)	36
BAC	BVZ	15 mg/kg	Gemcitabine/Cisplatine	N/A	Grade 1 (0.16)	Glomerular TMA	N/A	N/A	36
SLC	BVZ	10 mg/kg	CKD, Diabetes Cisplatin/Docetaxel	3 months	Grade 1 (0.5)	Glomerular TMA	2	Resolved	36
PC	BVZ	10 mg/kg	Gemcitabine, Erlotinib	5 months	Grade 4 (4.6)	Glomerular TMA	N/A	N/A	36
OC	BVZ	15 mg/kg	Unremarkable	9 months	Grade 1 (0.8)	Glomerular TMA	N/A	N/A	36
MDA	BVZ	10 mg/kg	Paclitaxel/Pamidronate	3 months	Grade 4 (3.6)	Glomerular TMAand Collapsing GN	6	Grade 1 (0.99)	37
OC	VEGF Trap	4 mg/kg	Gemcitabine LV5FU2/CPT11	1 week	Grade 4 (16.6)	Glomerular TMA	2	Grade 1 (0.3)	33
RCC	Sorafenib	400 mg/d	Nephrectomy Sunitinib	10 days	Grade 2 (2.4)	AIN	N/A	N/A	42
SH	Sunitinib	37.5 mg/d	Radiotherapy Taxol, adriamycine	2 weeks	Grade 2 (1)	Glomerular TMA	3	Undetectable	38

NCI, National Cancer Institute; VEGF, vascular endothelial growth factor; RCC, renal cell carcinoma; BVZ, bevacizumab; IFN-, interferon-alpha; TMA, thrombotic microangiopathy, ICGN, immune complex glomerulonephritis; N/A, not available; CKD, chronic kidney disease; NSCLC, non-small-cell lung cancer; BC, breast cancer; PC, pancreatic cancer; HC, hepatocarcinoma; BAC bronchoalveolar carcinoma; SLC small-cell lung carcinoma; OC, ovarian cancer; MDA: mammary ductal adenocarcinoma; IVSFU2, IVSFU2-GPT11, leucovorin5-fluorouracil/capecitabine; AIN, Acute interstitial nephritis; SH, skin hydradenoma.

Proteinuria as predictive marker

Whether the development of proteinuria might also serve as a surrogate marker of on-target effect (anti-tumor efficacy) and/or off-target effect (adverse event) is unknown.

Proteinuria as predictive marker of cardiotoxicity

Russo et al, Intern Emerg Med (2012) 7:439-46.

cohort with that of Russo et al. (most treated with chemotherapy)

Kidney Function (eGFR)	Russo et al. [5] (all women)	Russo et al. [5] (women >60)	InCHIANTI [2] (women)
Class I (normal) >90	30 %	15 %	18.3 %
class II (mild RD)	61 % (eGFR 60–89)	69 % (eGFR 60–89)	40.6 % (eGFR 61-90)
class III (moderate RD)	9 % (eGFR 30–59)	16 % (eGFR 30–59)	37.8 % (eGFR 31-60)
(severe RD) <30	0 %	0 %	3.3 %

Albini et al, Intern Emerg Med (2012) 7:399-401

Acknowledgments

IRCCS MultiMedica Adriana Albini Giuseppina Pennesi Rosaria Cammarota AnnaRita Cantelmo Ilaria Sogno Elena Magnani Giuseppina Di Giacomo Chiara Focaccetti Eugenio Cesana Luca Ruggiero

IST - Genova Nicoletta Ferrari Ulrich Pfeffer Francesca Tosetti Roberta Vené Università dell'Insubria Varese Douglas Noonan Antonino Bruno Arianna Pagani Lorenzo Mortara Laura Pulze

