ECOCARDIOCHIRURGIA

Milano 28 febbraio – 1 marzo 2013

CORSO AVANZATO DI ECOCARDIOGRAFIA DI "ECOCARDIOCHIRURGIA"

con uno sguardo all'imaging integrato

PARTE PROPEDEUTICA: ANATOMIA "VISTA" CON LE METODICHE DISPONIBILI

Arturo Raisaro, Pavia.

Anatomia del cuore e dei grandi vasi con i campi magnetici.

Come ricostruire l'anatomia del cuore (la RM).

Principle and sequence

Fast cardiac cine MRI

Segmented K-Space / Mutiphase single slice acquisition

(Atkinson and Edelman Radiology 1991)

Principle and sequence

Improving imaging time and quality

1 view per segment / 3 NEX / 5 min 21 sec

9 view per segment / 1 NEX / 14 sec

Principle and sequence

Improving Temporal Resolution

Echo Sharing / View Sharing

(Foo T et al Radiology 1995)

Principle and sequence

Steady State Free Precession vs Spoiled Fast Gradient Echo

PRO:

- a) Higher CNR blood/myocardium, less dependent on flow-related enhancement
- b) Faster (TR=3msec vs 8 msec), higher temporal and spatial resolution
- c) Better definition of endocardium, epicardium and pericardium (accurate anotomic depiction) **CONS:**

More sensitive to pulsatile flow artefacts, magnetic field inhomogeneities (dark stripes)

(Carr JC et al Radiology 2001)

Cine Magnetic Resonance Imaging Principle and sequence

Single slice SSFP vs Multislice real time SSFP

Imaging Parameters for cine MRI	Single slice SSFP	real time SSFP
Repetition time (msec)	3.6	2.6
Echo time (msec)	1.8	1.3
Flip angle	60°	50°
In plane resolution	2.2 X 1.4	4.2 X 2.7
Voxel size (mm3)	24.6	90.7
Time resolution (msec)	54	<u>90.7</u>
	(Lee et al Radiology 2002)	

Determination of Cardiac Axis

Cine Magnetic Resonance Imaging Determination of cardiac planes

Determination of cardiac planes

Axial Scout

Vertical long axis 2 chambers view

Determination of cardiac planes

VLA / 2-chamber view

Short-axis

Determination of cardiac planes

Cine Magnetic Resonance Imaging Determination of cardiac planes

Ventricular volumes, mass and function

Ventricular volumes, mass and function

A) estimation of ventricular volumes

- fast data acquisition and data analysis
- well-suited for projection techniques (e.g. ventriculography) but not for tomographic techniques
- less accurate than volumetric quantification (e.g. diseased ventricles)

B) volume quantification using slice summation

Ventricular volumes, mass and function

Limitation

- 1) No correction for longitudinal shortening (Through-plane motion)
- 2) Endocardial contouring (trabeculae and papillary muscle)
- LV base slice ? large volume change in submitral region
- 4) Partial volume effect at LV apex
- 5) Dependance on MRI sequence

Comparison with other Tecniques

Cardiac US		MRI		% reduction in	
SD	N°	SD	N°	sample size	
23.8	121	7.4	12	90	
15.8	53	6.5	10	81	
6.6	102	2.5	15	85	
36.4	273	6.4	9	97	
² 2/δ ²	f = 10.5 $\sigma = 0.05$ P = 0.90		powe	r 90 %, p < 0.05	
	Cardiac SD 23.8 15.8 6.6 36.4 ² 2/δ ²	Cardiac US SD N° 23.8 121 15.8 53 6.6 102 36.4 273 $f = \sigma = P = P = P = P$	Cardiac USMRISDN°SD23.81217.415.8536.56.61022.536.42736.42 2/52 $f = 10.5$ $\sigma = 0.05$ $P = 0.90$	Cardiac US MRI SD N° SD N° 23.8 121 7.4 12 15.8 53 6.5 10 6.6 102 2.5 15 36.4 273 6.4 9 2 $f = 10.5$ $\sigma = 0.05$ powe	

Adapted from Bellinger et al., J cardiovasc Magn Reson. 2000; 2(4):271-8

Comparison with other Tecniques

		Interobserver Variability (%)	Intraobserver Variability(%)
EDV			
	ССТ	2.6±2.0	2.0±1.3
	CMR	6.3±5.7	2.4±2.3
	RT3DE	11.2±8.6	3.9±2.0
ESV			
	CCT	5.7±5.2	2.2±3.1
	CMR	7.7±6.6	6.3±4.6
	RT3DE	14.2±11.8	5.6±3.9
EF			
	CCT	6.5±4.9	2.1±3.4
	CMR	8.5±9.7	6.2±6.2
	RT3DE	10.5±8.3	5.6±3.4

Data are expressed as means±SD.

Sugeng et al. Circulation 2006; 114:654-661

Determination of cardiac planes

Basal short-axis

In-outflow view / 3-chamber view

Determination of cardiac planes

HLA / 4-chamber view

RV VLA / RV 2-chamber view

Determination of cardiac planes

Cardiac Morphology and Characterization

Cardiac Morphology and Characterization

Pericardial Morphology and Characterization

Pericardial Characterization

T2 Weighted STIR Magnetic Resonance Imaging of the Heart

T2 depends on several factors

cell membrane components (~ 20 µsec)

Highly mobile H of fatty acids (140 msec)

mobile tissue water (40 msec) contributes 75% of T2-weighted signal (TE=60-65 msec)

Clinical Application of cardiac T2-w STIR MRI

- a) infarct-related edema (acute vs chronic ischemic event)
- b) Myocarditis
- c) Non ischemic cardiomyopathy (e.g. acute phase of sarcoidosis, stress cardiomyopthy)
- d) Heart Transplant (acute rejection)

T2 Weighted STIR MRI and Infarct-related Edema

T2 Weighted STIR Magnetic Resonance Imaging and NICM

T2 Weighted STIR Magnetic Resonance Imaging and NICM

Post-Contrast Imaging

Principle and sequence

Myocardial Infarct MR Imaging Segmented Inversion Recovery (IR) Fast Gradient Echo

(Simonetti O et al Radiology 2001)

Post-Contrast Imaging Clinical Application

Pattern of delayed gadolinium enhancement

Ischemic Pattern

Non ischemic pattern

Post-Contrast Imaging Clinical Application

Pattern of delayed gadolinium enhancement

Post-Contrast Imaging Clinical Application

Pattern of delayed gadolinium enhancement

CARDIOMIOPATIA IPERTROFICA: ANALISI DEGLI SPESSORI

Modello d'analisi a 17 segmenti, 6 basali, 6 medioventricolari, 4 distali e l'apice vero

 Gli spessori sono stati misurati sugli assi corti, tranne l'apice vero, misurato sugli assi lungi, in fase telediastolica

CARDIOMIOPATIA IPERTROFICA: FIBROSI SUBLIMINARE DIFFUSA

CARDIOMIOPATIA IPERTROFICA: FIBROSI INTRAMIOCARDICA

CARDIOMIOPATIA IPERTROFICA: FIBROSI SUBENDOCARDICA

CARDIOMIOPATIA IPERTROFICA: FIBROSI GIUNZIONALE

CARDIOMIOPATIA IPERTROFICA: FIBROSI EPICARDICA

Studio della funzione

Ventricolo sinistro

Non dilatato
FE 55%
Regolare spessore parietale
Normale cinesi di parete

Ventricolo destro

•Lievemente dilatato •FE 60%

ASSE CORTO 2 CAMERE

ASSE LUNGO 4 CAMERE

VALUTAZIONE DEL FLUSSO INTRACARDIACO

Per la valutazione del flusso sono state utilizzate due tecniche:

STUDIO DEL PRIMO PASSAGGIO DEL MEZZO DI CONTRASTO

STUDIO CON PHASE CONTRAST

RMC FIRST-PASS

VALUTAZIONE

RMC FIRST-PASS

La variazione dell'intensità del segnale del mezzo di contrasto in ogni camera cardiaca è rappresentato da una singola curva:

ATRIO DESTRO – curva rossa VENTRICOLO DESTRO – curva gialla ATRIO SINISTRO – curva verde VENTRICOLO SINISTRO – curva blu

DIFETTO INTERATRIALE

SHUNT CON DIREZIONE DEL FLUSSO DA SINISTRA VERSO DESTRA

PHASE CONTRAST

PHASE CONTRAST

VALUTAZIONE FUNZIONALE

Patient Name:

Patient ID: Examination Date: 15-Oct-08 Patient Height: 165.00 cm Patient Weight: 80.00 kg. Heart Rate: 72 Beats/min

	<u>Rigt</u>	t Ventricle -	<u>Absolute</u>	
Cardiac Function			Normal Range (N (MRI)	/) Units
Ejection Fraction	EF	59.5	47.00 74.00	%
End Diastolic Volume	EDV	214.4	88.00 227.00	0 ml
End Systolic Volume	ESV	86.9	23.00 103.00	0 ml
Stroke Volume	SV	127.6	52.00 138.00	0 ml
Cardiac Output	CO	9.18	2.82 8.82	l/min
Myocardial Mass (at ED)				g
Myocardial Mass (Avg)				g
Filling and Ejection Data				
Peak Ejection Rate			n.a.	ml/sec
Peak Ejection Time			n.a.	msec
Peak Filling Rate			n.a.	ml/sec
Peak Filling Time from ES			n.a.	msec

Patient Name:			
Patient ID:	Examination Date:	15-0ct-08	
Patient Height:	165.00 cm.Patient Weight: 80.0	0 kg. – Heart Rate:	72 Beats/min

	<u>Left Ve</u>	ntricle	<u>Absolute</u>	
Cardiac Function			Normal Range (M) (MRI)	Units
Ejection Fraction	EF	52.6	56.00 78.00	%
End Diastolic Volume	EDV	111.3	77.00 195.00	ml
End Systolic Volume	ESV	52.7	19.00 72.00	ml
Stroke Volume	SV	58.6	51.00 133.00	ml
Cardiac Output	CO 🤇	4.22	2.82 8.82	l/min
Myocardial Mass (at ED)				g
Myocardial Mass (Avg)				g
Filling and Ejection Data				
Peak Ejection Rate			n.a.	ml/sec
Peak Ejection Time			n.a.	msec
Peak Filling Rate			n.a.	ml/sec
Peak Filling Time from ES			n.a.	msec

Qp/Qs = 2,2

Conclusion

