CORSO AVANZATO DI ECOCARDIOGRAFIA DI "ECOCARDIOCHIRURGIA"

con uno sguardo all'imaging integrato

Valvulopatie: la Selezione ed il Ruolo del Centro di III Livello: Come Arrivare alle Ragionevoli Certezze?

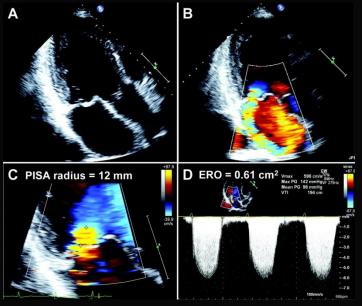
La RM Può Aiutarci?

Santo Dellegrottaglie, MD – PhD

Laboratorio di RM Cardiovascolare Divisione di Cardiologia Ospedale Medico-Chirurgico Accreditato Villa dei Fiori Acerra (Napoli)

Guidelines on the management of valvular heart disease (version 2012)

The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)


3.1.3.2 Cardiac magnetic resonance

In patients with inadequate echocardiographic quality or discrepant results, cardiac magnetic resonance (CMR) should be used to assess the severity of valvular lesions—particularly regurgitant lesions—and to assess ventricular volumes and systolic function, as CMR assesses these parameters with higher reproducibility than echocardiography.^{2,3}

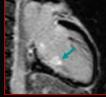
CMR is the reference method for the evaluation of RV volumes and function and is therefore useful to evaluate the consequences of tricuspid regurgitation (TR). In practice, the routine use of CMR is limited because of its limited availability, compared with echocardiography.

Heart Valve Disease: Investigation by Cardiovascular Magnetic Resonance

Kang D et al. Circulation 2009

Echocardiography remains the major imaging modality for assessing valve disease


Cardiovascular MR

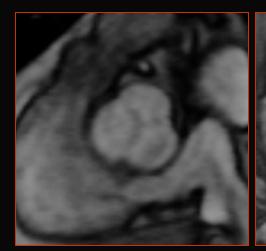

Morphology assessment

Functional assessment

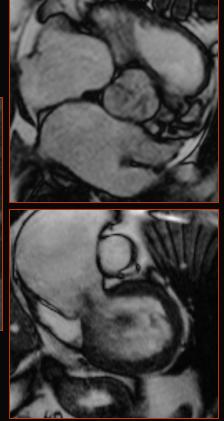
Aetiology assessment

Impact on ventricular dimension/function

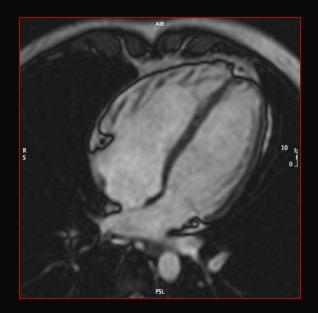
Associated great vessel disease

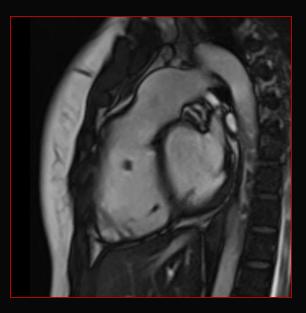


Evaluation of Valvular Function and Morphology


Advantage: unlimited imaging planes

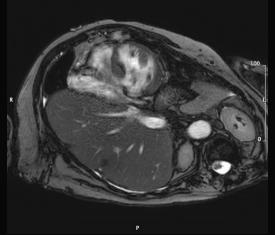
Bi-Leaflets Aortic Valve

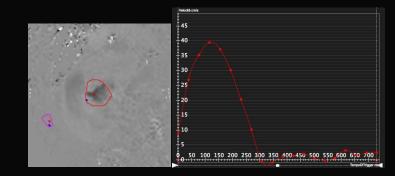



Aortic Stenosis

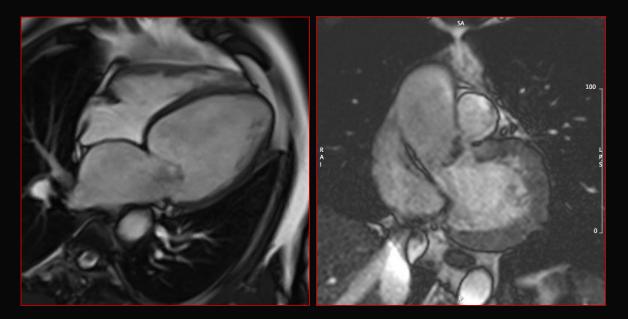
Aortic Regurgitation

Cardiovascular MR: Right-Heart Valves




Ebstein Anomaly Tricuspid Regurgitation Pulmonary Regurgitation

Cardiovascular MR: Poor Acoustic Window



CMR in Heart Valve Disease: Functional Assessment


Qualitative: visual assessment of turbulent flow in stenotic or regurgitant flow jets

Visualization of signal voids due to spin dephasing in moving protons

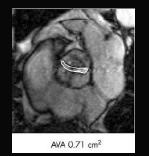
Assessing the severity of a valvular defect with visual assessment of cine images requires caution as the technique is subject to slice positioning, partial volume effects, the insensitivity of SSFP sequences and to other sequence parameters.

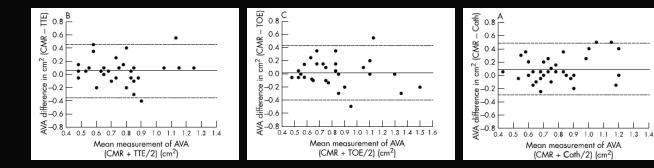
Quantification of Aortic Stenosis: Inadequacy of Traditional Methods

Bartunek J et al. Int J Card Imaging 1995

Segal J et al. J Am Coll Cardiol 1987

Evaluation of Aortic Stenosis by CMR Imaging: Comparison with Established Routine Clinical Techniques


Kupfahl C et al. Heart 2004

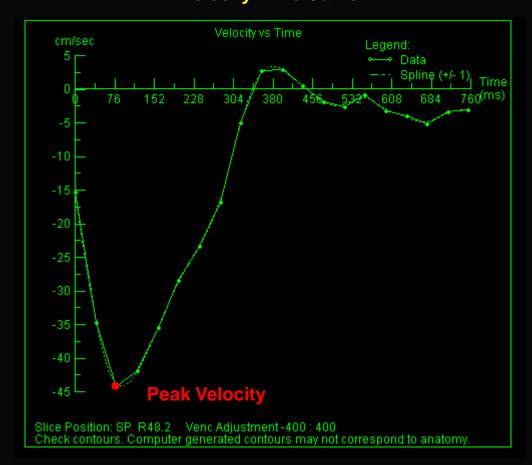

In this example, the valve could not be assessed by TTE due to poor acoustic window and LVOT calcification as well as by TOE due to commissural calcification

44 symptomatic pts. with severe AoSt AVA by continuity equation from TTE AVA by planimetry from TOE AVA by planimetry from cine-CMR AVA by Gorlin equation from catheterization

CMR planimetry had the best accuracy of all noninvasive methods for detecting severe AoSt in comparison with cardiac cath

Intra-observer bias = -0.016 Inter-observer bias = 0.019

Quantification of Aortic Stenosis by Phase-Contrast CMR

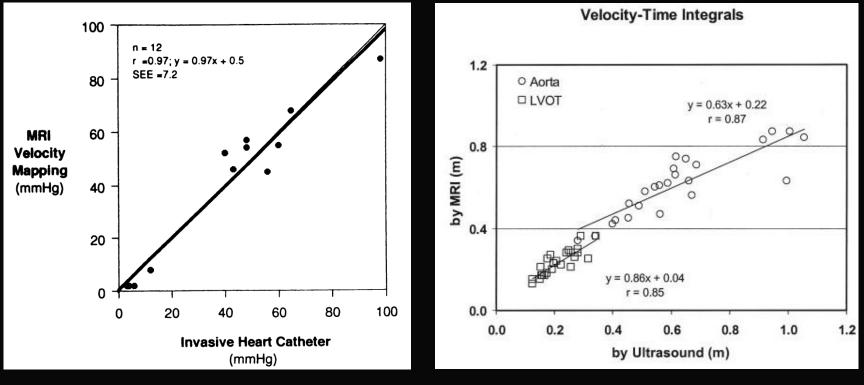


Modificed Bernulli Equation

 $\Delta \mathbf{P} = \mathbf{4} \ \mathbf{V}^2$

Advantages

Velocity-Time Curve

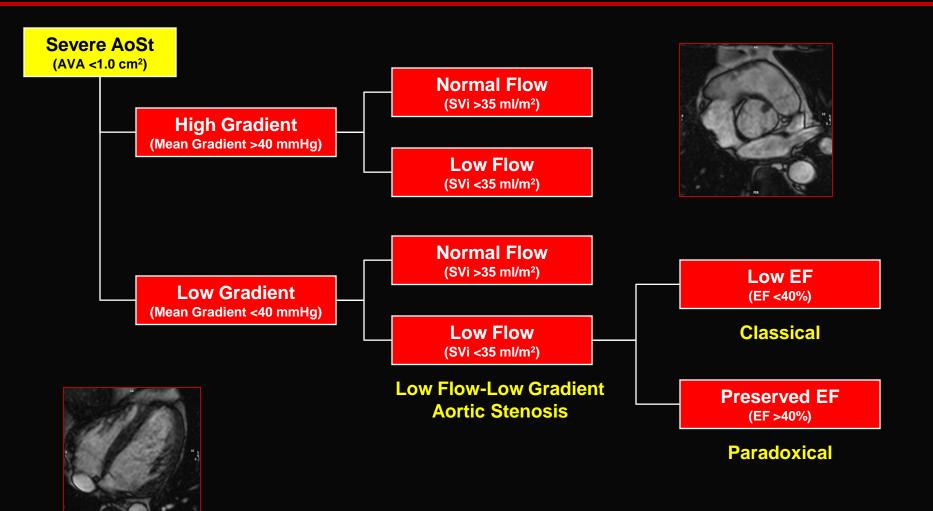

- Evaluation of pts. with angulated roots

(correct echo beam alignment is difficult)

- Ability to differentiate sub-valvar and supra-valvar stenosis

- Possibility to assess the ascending aorta which may be dilated

Quantification of Aortic Stenosis by Phase-Contrast CMR


Eichenberger AC et al. Am J Roentgenol 1993

Caruthers SD et al. Circulation 2003

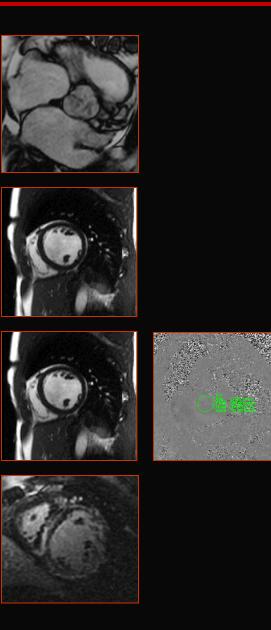
Disadvantages

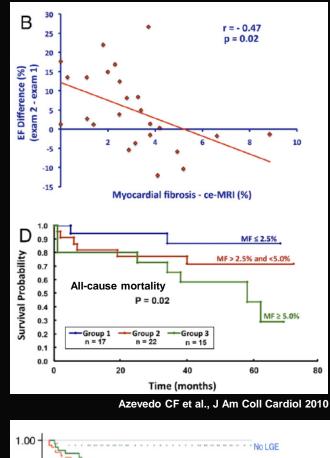
Less accurate (modest underestimation) compared to continuous-wave Doppler echo for higher velocities (partial volume effects, lower temporal resolution, and artefacts from turbulent jets)

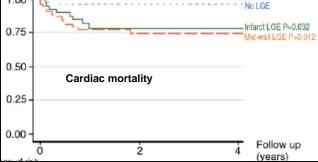
Flow-Gradient Patterns in Severe Aortic Stenosis

Paradoxical low flow-low-gradient pattern has been reported in up to 35% of patients with severe AS and seems to be consistent with a more advanced stage of the disease (increased global LV afterload, significant LV concentric remodeling, and intrinsic myocardial dysfunction)

Hachicha Z et al., Circulation 2007

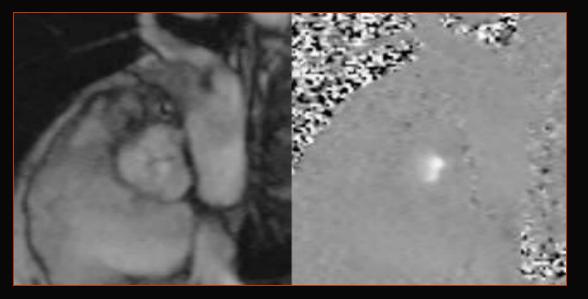

Low Flow-Low Gradient Ao St: Pontential Role of MRI


Planimertric AVA

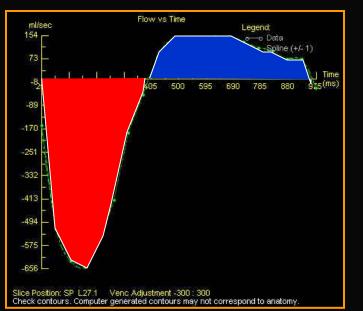

LV Ejection Fraction

LV Stroke Volume

LV Myocardial Scar/Fibrosis



Dweck MR et al., J Am Coll Cardiol 2011


Insufficienza Aortica: Imaging a Contrasto di Fase

Grade	Sinotubular Junction (%)
0-1+	<8
2+	8-19
3+	20-29
4+	≥30

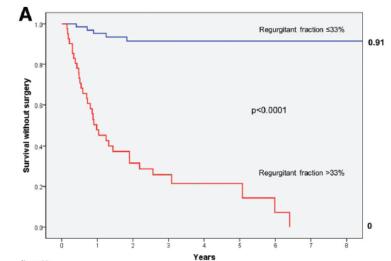
Gabriel RS et al. Am J Cardiol 2011

Curva Flusso-Tempo

Aortic Regurgitation Quantification Using CMR: Association With Clinical Outcome

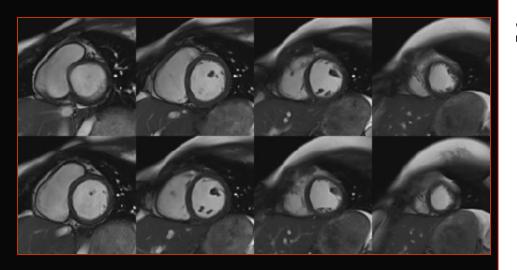
Myerson SG et al. Circulation 2012

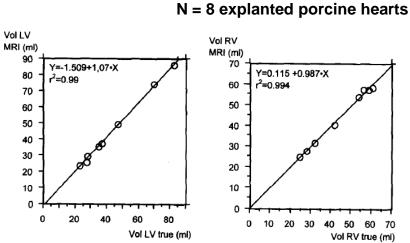
Aortic valve replacement is usually reserved for when symptoms or significant LV dilation or dysfunction occur, but prognosis is already reduced by this stage.

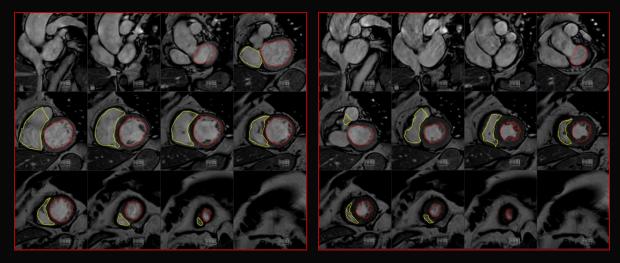

Earlier surgery has been advocated, but it is also important to avoid the increased risks associated with premature surgery.

N= 113 pts. with moderate or severe AR by Echo

Follow-up = 2.6±2.1 years following a CMR


Outcomes = survival without surgery (progression to symptoms/other indications for surgery)




85% of pts. with RF >33% progressed to surgery vs. 8% of pts. with RF \leq 33% (p<0.0001)

Volumetric Analysis of the Right and Left Ventricle with MRI

Heusch A et al. Eur J Ultrasound 1999

End-diastole

End-systole

MR Angiograhy of the Thoracic Aorta

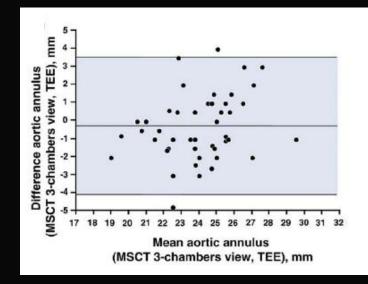
Aneurysm

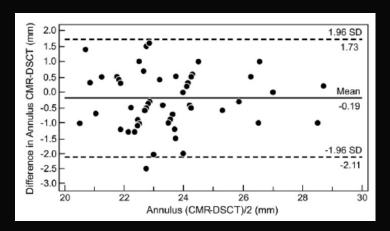
Dissection


Coarctation

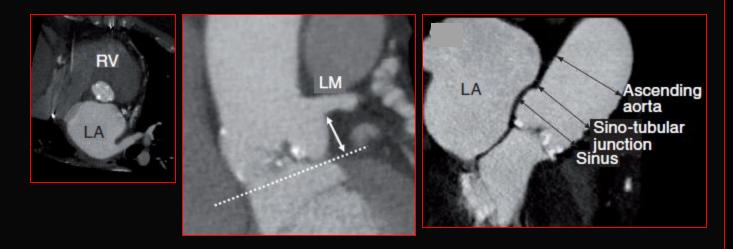
Assessment of Aortic Annulus Diameter

Are the Noninvasive Imaging Modalities Interchangeable?

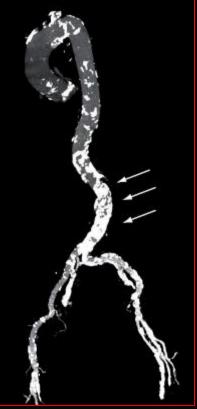




Medtronic CoreValve[™]

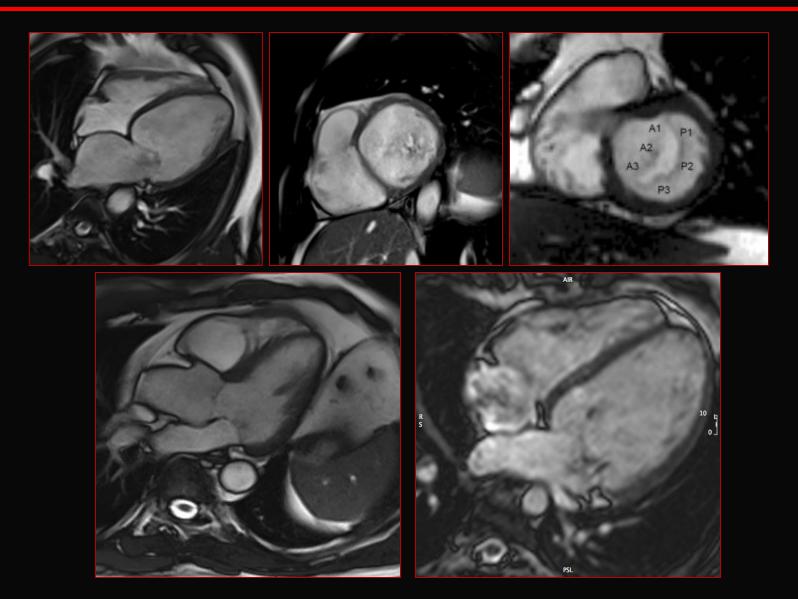

Koos R et al., Int J Cardiol 2011

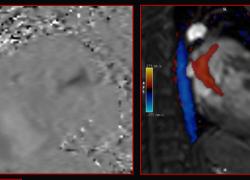
Messika-Zeitoun D et al., J Am Coll Cardiol 2010


Trancatheter Aortic Valve Implantation (TAVI) Morphologic Selection Criteria

Feasibility assessment:

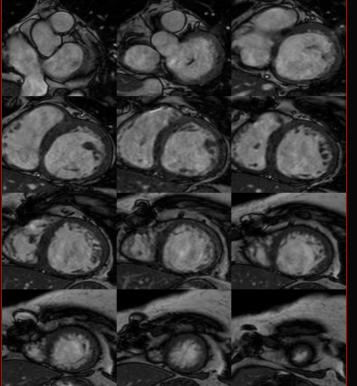
- Left ventricular function
- Coronary artery anatomy/disease severity
- Coronary ostia position (take-off)
- Aortic valve calcification
- Size of aortic annulus
- Size, calcification, tortuosity of aorta/ilio-femoral arteries

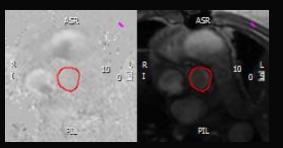




Delgado V et al., Expert Rev Cardiovasc Ther 2010

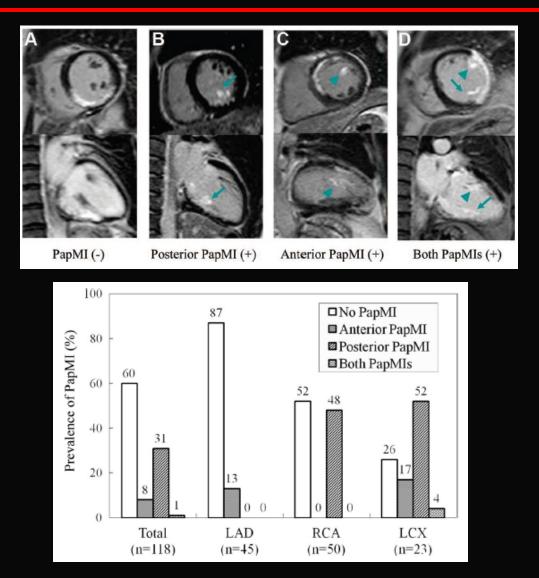
Comprehensive Assessment of Mitral Regurgitation Using Cardiac Magnetic Resonance





Grade	Regurgitant Volume
Mild	≤15%
Moderate	16-24%
Mod-severe	25-42%
Severe	>42%

Gelfand EV et al. J Cardiov Magn Res 2006



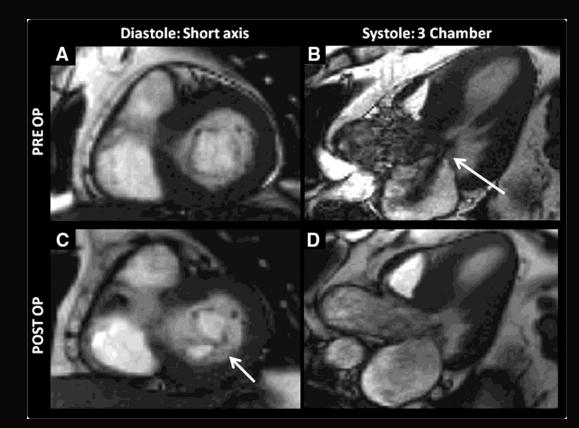
LV Stroke Volume – Aortic Systolic Flow

Mitral Regurgitant Volume

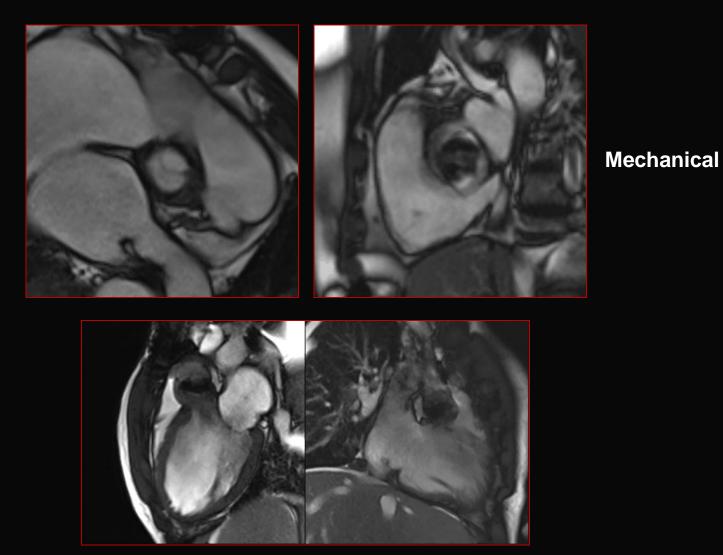
Prevalence and Clinical Significance of Papillary Muscle Infarction Detected by LGE MRI in Patients With STEMI

Tanimoto T et al. Circulation 2010

N= 118 STEMI with primary PCI PapMI in 40%


	MR		
	Yes (n=34)	No (n=84)	Р
Maximum total CK, IU/L	3229±2487	2509±1747	0.08
Maximum CK-MB, IU/L	301±123	209±150	< 0.01
Infarct-related artery, n			0.44
LAD	11	34	
LCx	9	14	
RCA	14	36	
Time to reperfusion, h	5.3±3.1	5.0 ± 3.3	0.65
LVEDV, mL	130±33	116±29	0.20
LVESV, mL	71±28	60±25	0.04
LVEF, %	47±10	50 ± 10	0.14
Infarct size, %	21±8	16±11	0.02
MVO, n (%)	11 (32)	27 (32)	1.00
Sphericity index	$0.61\!\pm\!0.06$	0.57±0.07	0.04
Mitral annular diameter, mm	34.9±2.7	34.4±2.8	0.29
Coaptation height, mm	6.7±1.6	3.6 ± 1.5	< 0.01
LA diameter, mm	32.7±6.1	31.1±5.7	0.18
PapMI, n (%)			0.32
None	18 (53)	53 (63)	
Anterior	2 (6)	8 (10)	
Posterior	14 (41)	23 (27)	

Myectomy Plus Alfieri Technique for Outflow Tract Obstruction in Hypertrophic Cardiomyopathy


Sado DM et al. Circulation 2010

Pre-op:

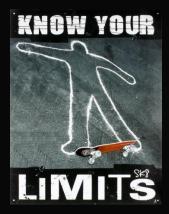
- -Septal hypertrophy
- SAM of the anteriore mitral leaflet
- Severe mitral regurgitation
- LVOT gradient = 40 mmhg (56 mmhg during Valsalva)

Cardiovascular MR: Prosthetic Valves

Biological

Heart Valve Disease: Investigation by Cardiovascular MRI - Limitations -

Temporal Resolution (30-50 ms)



Partial volume effect

Underestimation of functional significance of valve disease

Multisegment acquisition

(signal overage from multiple cardiac cycles)

Suboptimal visualization of small/chaotically mobile structures (i.e. vegetations)

Very irregular rhythms (e.g. uncontrolled AF, multiple VEs) can present a challenge

Guidelines on the management of valvular heart disease (version 2012)

The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

ble 11 Recommendations for the use of nscatheter aortic valve implantation				
Recommendations	Class ^a	Level ^b	Ref ^c	
TAVI should only be undertaken with a multidisciplinary ' <u>heart team'</u> including cardiologists and cardiac surgeons and other specialists if necessary.	I	с		
TAVI should only be performed in hospitals with cardiac surgery on-site.	I	с		
TAVI is indicated in patients with severe symptomatic AS who are not suitable for AVR as assessed by a 'heart team' and who are likely to gain improvement in their quality of life and to have a life expectancy of more than I year after consideration of their comorbidities.	I	В	99	
TAVI should be considered in high-risk patients with severe symptomatic AS who may still be suitable for surgery, but in whom TAVI is favoured by a <u>'heart team'</u> based on the individual risk profile and anatomic suitability.	lla	В	97	

Decision-making should ideally be made by a 'heart team' with a particular expertise in VHD, including cardiologists, cardiac surgeons, imaging specialists, anaesthetists and, if needed, general practitioners, geriatricians, or intensive care specialists.

Laboratorio RM Cardiaca

Ospedale Medico-Chirugico Accreditato Villa dei Fiori Acerra (Napoli)

CORSO AVANZATO DI ECOCARDIOGRAFIA DI "ECOCARDIOCHIRURGIA"

con uno sguardo all'imaging integrato

Valvulopatie: la Selezione ed il Ruolo del Centro di III Livello: Come Arrivare alle Ragionevoli Certezze?

La RM Può Aiutarci?

Santo Dellegrottaglie, MD – PhD

Laboratorio di RM Cardiovascolare Divisione di Cardiologia Ospedale Medico-Chirurgico Accreditato Villa dei Fiori Acerra (Napoli)

