AZIONALE VIII CONGRESSO NAZIONALE VI NO, 21 - 22 - 23 MARZO 2016 MILANO, 21 - 22 - 23 MARZO 2016

Paziente con dolore toracico, troponine positive e coronarie esenti da stenosi significative.

Cosa aggiunge la RM quando la sola valutazione delle coronarie epicardiche non esaurisce l'inquadramento diagnostico nella sospetta SCA

Santo Dellegrottaglie, MD – PhD

Laboratorio di RM Cardiovascolare Divisione di Cardiologia/UTIC Ospedale Medico-Chirurgico Accreditato Villa dei Fiori Acerra (Napoli)

Myocardial Infarction with Normal Coronary Arteries

- The Prevalence -

The Stockholm Myocardial Infarction with Normal Coronaries Study (SWEDEHEART registry)

Collste O et al. J Int Med 2013

Patients with Suspected Myocardial Infarction and Non-obstructive Coronary Arteries

 Multicenter MI registries have reported that as many as 10% of MI patients have no evidence of obstructive CAD

Systematic Review of Patients Presenting With Suspected Myocardial Infarction and Nonobstructive Coronary Arteries

Sivabaskari Pasupathy, BSc(Hons); Tracy Air, BA (Hons), M.Biostatistics; Rachel P. Dreyer, BSc(Hons), PhD; Rosanna Tavella, BSc(Hons), PhD; John F. Beltrame, BSc, BMBS, PhD

Circulation. 2015;131:861-870.

Meta-analysis of 28 studies including MINOCA

Overall prevalence of MINOCA = 6%

Cardiovascular Risk Factors									
	Comparative Studies								
Risk Factors	MI-CAD % (95% CI)	MINOCA % (95% CI)	Mean difference/OR (95% Cl) & <i>P</i> Value						
Age	61.3	58.8	4.1 (2.9,5.4)						
	(52.2, 70.4)	(51.6, 66.1)	<i>P</i> <0.001						
Women	24%	43%	2.1 (1.7, 2.7)						
	(19%, 30%)	(35%, 51%)	<i>P</i> <0.001						
Hyperlipidemia	32%	21%	0.6 (0.5, 0.7)						
	(15%, 48%)	(6%, 35%)	<i>P</i> <0.001						
Hypertension	45%	52%	1.3 (0.9, 1.9)						
	(30%, 59%)	(41%, 62%)	<i>P</i> =0.183						
Diabetes	22%	15%	0.8 (0.5, 1.3)						
mellitus	(14%, 29%)	(9%, 20%)	<i>P</i> =0.333						
Smoking	39%	42%	1.1 (0.7, 1.5)						
	(26%, 52%)	(33%, 51%)	<i>P</i> =0.785						
Family history	27%	21%	1.0 (0.7, 1.3)						
	(10%, 43%)	(5%, 38%)	<i>P</i> =0.794						

Outcomes								
Comparative Studies								
All-Cause	MI-CAD	MINOCA	OR (95% Cl)	All MINOCA				
Mortality	% (95% CI)	% (95% CI)	<i>P</i> Value	Studies				
In-hospital	3.2%	1.1%	0.37 (0.2–0.67)	0.9%				
	(1.8%, 4.6%)	(-0.1%, 2.2%)	<i>P</i> =0.001	(0.5%, 1.3%)				
12-month	6.7%	3.5%	0.59 (0.41–0.83)	4.7%				
	(4.3%, 9.0%)	(2.2%, 4.7%)	<i>P</i> =0.003	(2.6%, 6.9%)				

Systematic Review of Patients Presenting With Suspected Myocardial Infarction and Nonobstructive Coronary Arteries

Sivabaskari Pasupathy, BSc(Hons); Tracy Air, BA (Hons), M.Biostatistics; Rachel P. Dreyer, BSc(Hons), PhD; Rosanna Tavella, BSc(Hons), PhD; John F. Beltrame, BSc, BMBS, PhD

Circulation. 2015;131:861-870.

- Myocarditis
 Acute MI
- 3. Tako-tsubo Cardiomyopathy

Routine evaluation of MINOCA should include CMR imaging, together with provocative spasm testing, and thrombophilia assessment

Regional wall motion & ejection fraction

> Area at risk & hemorrage

First-pass and early post-Gd

Perfusion defects & microvascular obstruction (no-reflow)

Late post-Gd

Myocardial scar & microvascular obstruction

Imaging Targets

CMR Techniques

MRI for Infarct Sizing and Characterization of Ischemic Myocardial Damage

Esposito G, Dellegrottaglie S, Chiariello M. Am Heart J Suppl 2010

Characteristic Patterns of Late Enhancement in Specific Cardiomyopathies

White JA and Patel MR. Cardio Clin 2007

Role of CMR in Patients Presenting with Chest Pain, Raised Troponin, and Unobstructed Coronary Arteries

N= 79 pts resting chest pain, ↑ Tn and CAD (–) by cath 92% with abnormal ECG on presentation (40% with ↑ST) Median symptoms-CMR interval = 15 days

Assomull RG et al. *Eur Heart J* 2007 Monney PA et al. *Heart* 2011 T.R. 36 year-old male Intense chest pain No CV risk factors Tnl = 5.18 ng/dl

Coronary angiography – Echo unremarkable

Cine (Function)

T2 STIR (Edema/Inflammation)

Late Enhancement (Necrosis/Fibrosis)

Diagnostic Accuracy of CMR Tissue Criteria in Detecting Myocarditis

Friedrich M.G. et al. for the International Consensus Group on CMR in Myocarditis, JAm Coll Cardiol 2009

	Sensitivity (%)	Specificity (%)	Accuracy (%)	PPV (%)	NPV (%)
T2W STIR	70	71	70	77	63
Early Post-Gd Enhancement	74	83	78	86	70
Late Post-Gd Enhancement	59	86	68	89	53
Combination (any 2 of 3)	67	91	78	91	69

Proposed Diagnostic CMR Criteria for Myocarditis (≥2 criteria need to be satisfied)

- 1. Regional or global † SI in T2W STIR images
- 3. ≥1 focal area of nonischemic enhancement in late post-Gd T1W images

Ischemia

Myocarditis

CMR Sensitivity Varies With Clinical Presentation and Extent of Cell Necrosis in Biopsy-Proven Acute Myocarditis

Marco Francone, MD, PHD,* Cristina Chimenti, MD, PHD,†‡ Nicola Galea, MD,* Fernanda Scopelliti, PHD,§ Romina Verardo, PHD,§ Roberto Galea, MD,|| Iacopo Carbone, MD,* Carlo Catalano, MD,* Francesco Fedele, MD,† Andrea Frustaci, MD†§ *Rome, Italy* (J Am Coll Cardiol Img 2014;7:254–63)

N = 57 pts with lymphocytic acute myocarditis by EMB

Ghelani SJ et al. Circ Cardiovasc Qual Outcomes 2012

Di Bella G et al. J Cardiov Med 2011

Takotsubo Cardiomyopathy/LV Apical Ballooning/ Stress Cardiomyopathy/Broken Heart Syndrome

Meccanismi Potenziali Sottostanti la Cardiomiopatia da Stress (Takotsubo)

Akashi YJ et al. Circulation 2008

Takotsubo Cardiomyopathy

Takotsubo Cardiomyopathy/LV Apical Ballooning/Stress Cardiomyopathy (Mayo Clinic Diagnostic Criteria):

- (1) Occurrence of transient LV dysfunction extending beyond a single coronary territory (frequently, but not always, subsequent to a stressful trigger)
- (2) Absence of obstructive coronary disease or angiographic evidence of acute plaque rupture
- (3) New ECG abnormalities (ST-segment elevation and/or T-wave inversion) or modest elevation in cardiac troponin
- (4) Absence of pheochromocytoma and myocarditis

Takotsubo cardiomyopathy represents an estimated 1% to 2% of patients who present with an acute coronary syndrome, although this estimate may be low because of underrecognition.

Clinical and CMR Characateristics of Stress Cardiomyopathy (takotsubo)

Eitel I et al. JAMA 2011

N = 207 pts with takotsubo from 7 centers in Europe and US

87% women

71% with a stressful trigger

87% with ECG changes

90% with elevated Troponin

100% with reduced LV EF

2% died during in-hospital phase

100% of the remaining with recovery of LV EF at 1-6 month FU

Differential Diagnosis of Suspected Apical Ballooning Syndrome Using Contrast-Enhanced MRI

Eitel I. et al. Eur Heart J 2008

European Heart Journal (2013) **34**, 2636–2648 doi:10.1093/eurheartj/eht210 ESC REPORT

Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases

Alida L. P. Caforio^{1†*}, Sabine Pankuweit^{2†}, Eloisa Arbustini³, Cristina Basso⁴, Juan Gimeno-Blanes⁵, Stephan B. Felix⁶, Michael Fu⁷, Tiina Heliö⁸, Stephane Heymans⁹, Roland Jahns¹⁰, Karin Klingel¹¹, Ales Linhart¹², Bernhard Maisch², William McKenna¹³, Jens Mogensen¹⁴, Yigal M. Pinto¹⁵, Arsen Ristic¹⁶, Heinz-Peter Schultheiss¹⁷, Hubert Seggewiss¹⁸, Luigi Tavazzi¹⁹, Gaetano Thiene⁴, Ali Yilmaz²⁰, Philippe Charron²¹, and Perry M. Elliott¹³ Recommendations

- All patients with clinically suspected myocarditis should undergo a standard trans-thoracic echocardiogram at presentation.
- Trans-thoracic echocardiogram should be repeated during hospitalization if there is any worsening of haemodynamics.

Recommendations

- Cardiovascular magnetic resonance findings consistent with myocarditis should be based on Lake-Louise criteria (Table 5).
- Cardiovascular magnetic resonance may be considered in clinically stable patients prior to EMB. Cardiovascular magnetic resonance does not replace EMB in the diagnosis of myocarditis and should not delay EMB in life-threatening presentations.

Recommendation

 All patients with clinically suspected myocarditis should be considered for selective coronary angiography and EMB.

Diagnostic Synergy of Cardiac MR and EMB in Troponin-positive Patients Without CAD

- N= 82 pts. with Tnl-positive acute chest pain
- No significant coronary disease
- CMR with LE imaging only
- RV and/or LV EMB guided by CMR with dectection of viral genomes

Apical Ballooning Syndrome: CMR Characterization

Apical Ballooning Syndrome: CMR Characterization

69-year-old man with acute chest pain Significant ST elevation Peak Tnl = 20 ng/ml

Apical LV Dysfunction

Apical LV Edema

Apical LV Scar

34-year-old female with acute chest pain (intense emotional stress) Significant ST elevation Peak Tnl = 1.06 ng/ml

Apical LV Dysfunction

Apical LV Edema

No LV Scar

Z. S.

Maschio; 37 anni; sovrappeso Ricovero in UTIC per angor, Tnl +, onda T negativa in DIII e aVF, ipocinesia parete laterale Coronarografia: negativa Diagnosi di dimissione: IMA a coronarie indenni; indicazione a RM cardiaca Terapia: ASA, Corlentor, Dermatrans, Totalip RM cardiaca (a 1 settimana)

Miocardite acuta

Hub-Spoke Model for Cardiac MRI

Laboratorio RM Cardiaca Clinica Villa dei Fiori (Acerra, Napoli)

~5% in ambulanza da altri Ospedali

Management of Patients with MINOCA

Models for Implementation of Systematic Use of Cardiac MRI

Model 1 \rightarrow The Patients are traveling

Model 2 \rightarrow The Imagers are traveling

Model 3 \rightarrow The Images are traveling

Costs €

Dolore toracico acuto + Alterazioni ECG + Movimento enzimatico

Coronarie angiograficamente integre (assenza di stenosi significative)

RM Cardiaca

Cardiomiopatia da stress (takotsubo) Infarto miocardico acuto

Miocardite acuta

Laboratorio RM Cardiaca

Ospedale Medico-Chirugico Accreditato Villa dei Fiori

Acerra (Napoli)

AZIONALE VIII CONGRESSO NAZIONALE VI NO, 21 - 22 - 23 MARZO 2016 MILANO, 21 - 22 - 23 MARZO 2016

Paziente con dolore toracico, troponine positive e coronarie esenti da stenosi significative.

Cosa aggiunge la RM quando la sola valutazione delle coronarie epicardiche non esaurisce l'inquadramento diagnostico nella sospetta SCA

Santo Dellegrottaglie, MD – PhD

Laboratorio di RM Cardiovascolare Divisione di Cardiologia/UTIC Ospedale Medico-Chirurgico Accreditato Villa dei Fiori Acerra (Napoli)

