

University of Pavia - School of Medicine Foundation I.R.C.C.S. Policlinico "San Matteo" Cardiac Surgery - Intrathoracic Transplantation - Pulmonary Hypertension Pavia, Italy

Prof. Andrea M. D'Armini, M.D. TECHNIQUE AND OUTCOMES OF PULMONARY ENDARTERECTOMY SURGERY. HOW TO SELECT THE RIGHT PATIENT?

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE FINANCIAL DISCLOSURE

Last three years

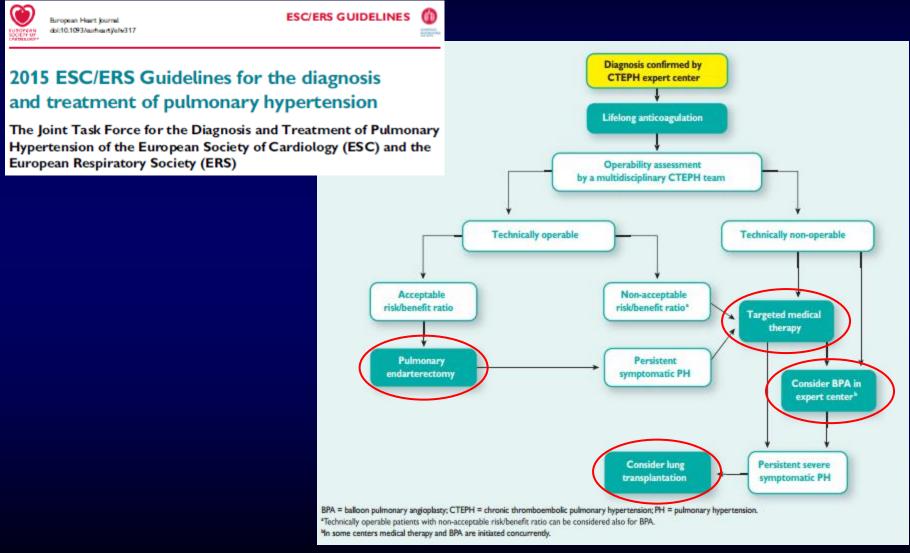
Actelíon Pharmaceuticals Ltd Bayer HealthCare Merk Sharp Dohme

European Heart journal doi:10.1093/eurheart/jehv317

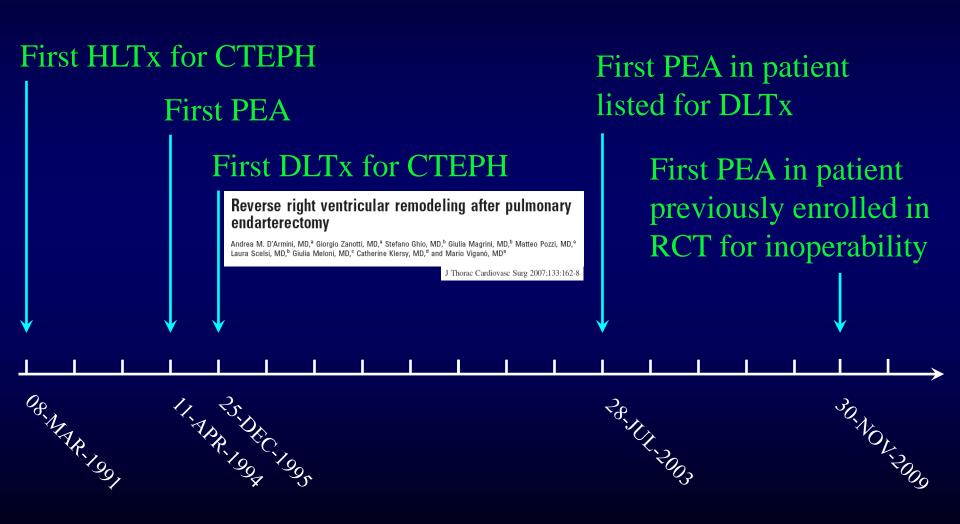
ESC/ERS GUIDELINES

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

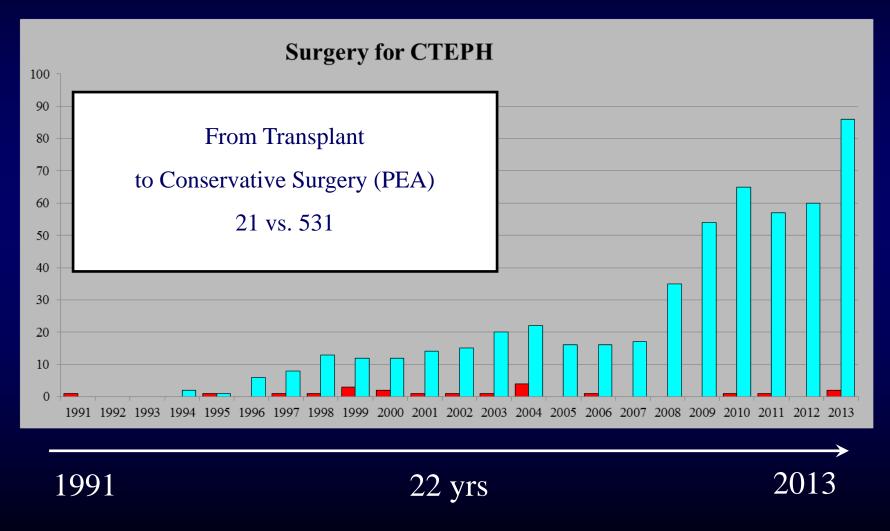

I. Pulmonary arterial hypertension
 1.1 Idiopathic 1.2 Heritable 1.2.1 BMPR2 mutation 1.2.2 Other mutations 1.3 Drugs and toxins induced 1.4 Associated with: 1.4.1 Connective tissue disease 1.4.2 Human immunodeficiency virus (HIV) infection 1.4.3 Portal hypertension 1.4.4 Congenital heart disease (Table 6) 1.4.5 Schistosomiasis
I'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis
 I'.1 Idiopathic I'.2 Heritable I'.2.1 EIF2AK4 mutation I'.2.2 Other mutations I'.3 Drugs, toxins and radiation induced I'.4 Associated with: I'.4.1 Connective tissue disease I'.4.2 HIV infection
I". Persistent pulmonary hypertension of the newborn
2. Pulmonary hypertension due to left heart disease
 2.1 Left ventricular systolic dysfunction 2.2 Left ventricular diastolic dysfunction 2.3 Valvular disease 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 2.5 Congenital /acquired pulmonary veins stenosis

 Fulmonary hypertension due to lung diseases and/or hypoxia 	
 3.1 Chronic obstructive pulmonary disease 3.2 Interstitial lung disease 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 3.4 Sleep-disordered breathing 3.5 Alveolar hypoventilation disorders 	
3.6 Chronic exposure to high altitude 3.7 Developmental lung diseases (Web Table III)	
4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions	4%
 4.1 Chronic thromboembolic pulmonary hypertension 4.2 Other pulmonary artery obstructions 4.2.1 Angiosarcoma 4.2.2 Other intravascular tumors 4.2.3 Arteritis 4.2.4 Congenital pulmonary arteries stenoses 4.2.5 Parasites (hydatidosis) 	
5. Pulmonary hypertension with unclear and/or multifactorial mechanisms	
 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis, lymphangiolelomyomatosis 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: pulmonary tumoral thrombothic microangiopathy, 	
fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension	


PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE INTRODUCTION

- *Chronic thromboembolic pulmonary hypertension (CTEPH)* represents the *only* type of pulmonary hypertension surgically treatable, in the majority of cases, without transplant
- This life-saving conservative surgery is called *pulmonary endarterectomy (PEA)*

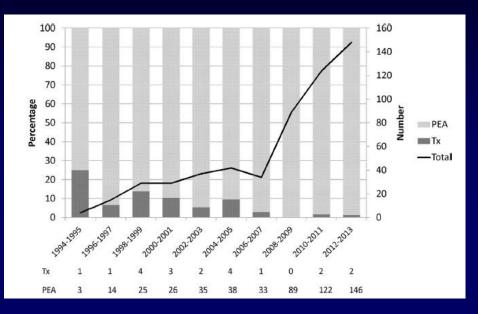
CTEPH AND LUNG TRANSPLANTATION: THE PAVIA EXPERIENCE LTx IN THE GUIDELINES FOR CTEPH

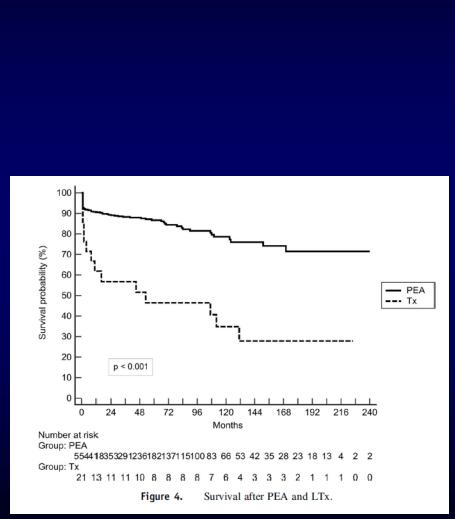


SURGICAL TREATMENT OF CTEPH

HEART-LUNG TRANSPLANTATION: THE PAVIA EXPERIENCE

SURGICAL TREATMENT OF CTEPH

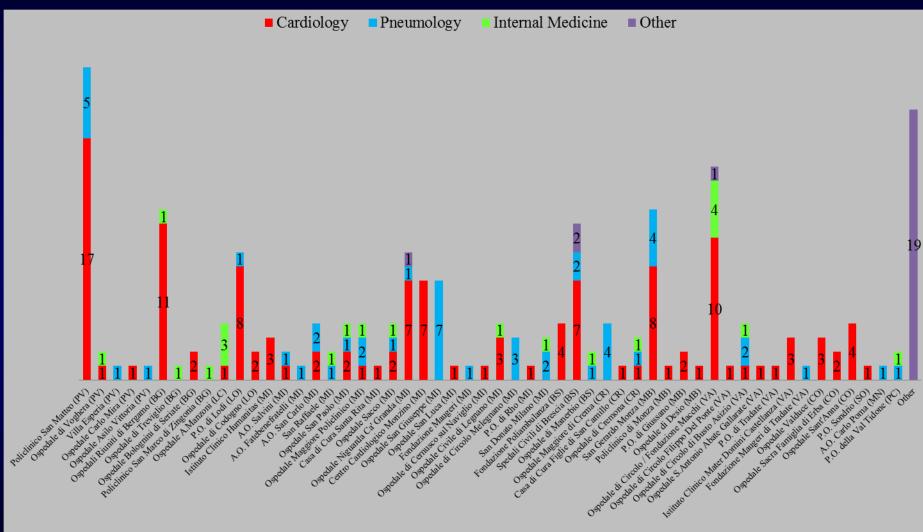

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE SURGICAL TREATMENT OF CTEPH


Chronic thromboembolic pulmonary hypertension: From transplantation to distal pulmonary endarterectomy

Andrea M. D'Armini, MD,^a Marco Morsolini, MD, PhD,^b Gabriella Mattiucci, MD,^b Valentina Grazioli, MD,^a Maurizio Pin, MD,^a Antonio Sciortino, MD,^a Eloisa Arbustini, MD,^c Claudio Goggi, MD,^a and Mario Viganò, MD^a The Journal of Heart and Lung Transplantation

J Heart Lung Transplant. 2016 Jan 6. pii: S1053-2498(16)00024-3

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE SURGICAL TREATMENT OF CTEPH


PATIENTS' REFERRAL

FROM 4/1994 TO 3/2017 780 PEAs

Pts coming from outside Italy			
- Albania	1		
- Greece	1		
- Israel	1		
- Kosovo	1		
- Romania	2		
- Russia	1		
- Uganda	1		
- U.S.A.	1		

PATIENTS' REFERRAL FROM LOMBARDIA FROM 4/1994 TO 3/2017 - 219 PEAs

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE INDICATIONS FOR SURGERY

• The indications for the *surgical treatment* of these patients are based on

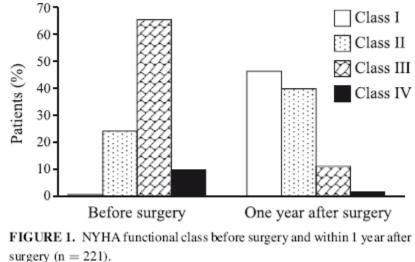
CLINIC HEMODYNAMIC

The indications for the *type of surgery* are based on
 ANATOMY

- *CTEPH* patients *must be* in *NYHA functional class III or IV* before being *evaluated for PEA!*
- *Since 2003* we have performed *PEA* in *NYHA functional class II* patients, given the *natural history of CTEPH* ...and the *good results of PEA*...

INDICATIONS FOR SURGERY NYHA FUNCTIONAL CLASS

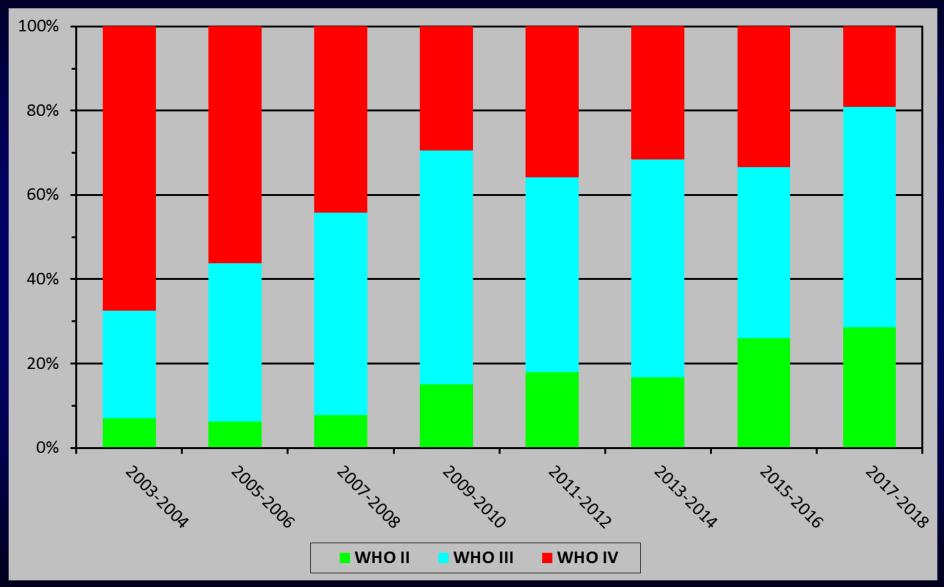
ACQUIRED CARDIOVASCULAR DISEASE


(J Thorac Cardiovasc Surg 2011;141:702-10)

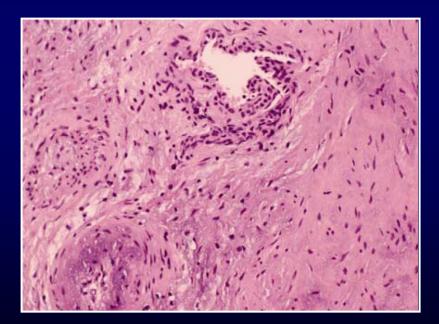
Surgical management and outcome of patients with chronic thromboembolic pulmonary hyperte international prospective registry

Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav J Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MI Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Sir

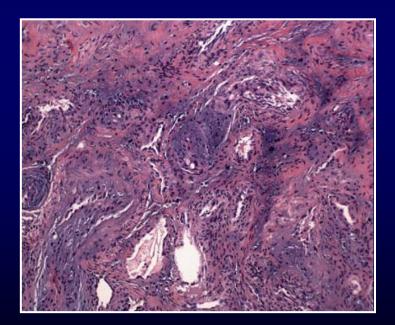
Study Design


This prospective registry was designed to include newly diagnosed (≤6 months) consecutive patients with CTEPH in participating centers in Europe and Canada, from February 2007 to January 2009. The registry proto-

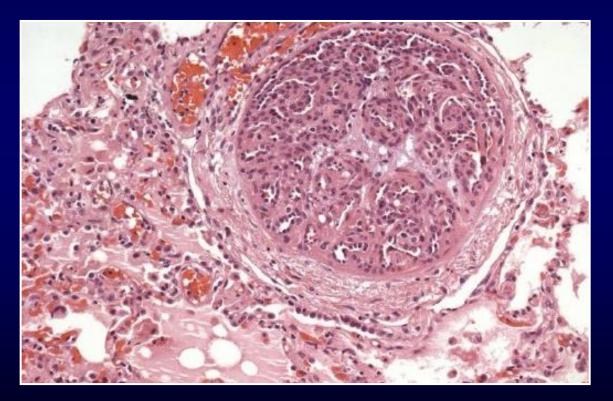
PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE NYHA CLASS DISTRIBUTION 2007-2008


	INTERNATIONAL REGISTRY	PAVIA
II	25%	5%
III	65%	50%
IV	10%	45%

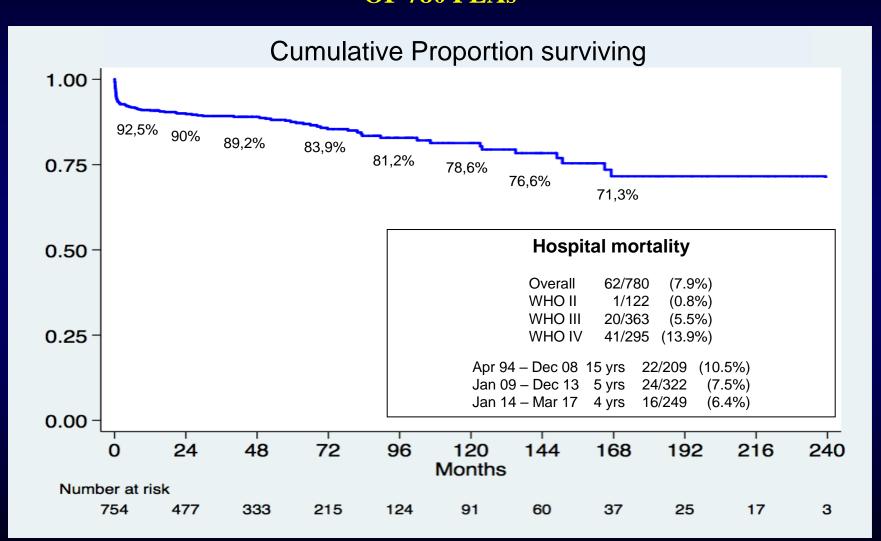
WHO CLASS DISTRIBUTION


PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PATHOPHYSIOLOGY ACCORDING TO THE LENGTH OF THE DISEASE

1. Hypertensive remodeling of the patent pulmonary vascular bed *(Eisenmenger-like)* due to volume and pressure overload


PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PATHOPHYSIOLOGY ACCORDING TO THE LENGTH OF THE DISEASE

2. Chronic arteriopathy of the obstructed branches with *calcifications* and possible *retraction* of the distal vessels




PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PATHOPHYSIOLOGY ACCORDING TO THE LENGTH OF THE DISEASE

3. Plexiform lesions stemming from the capillary bed

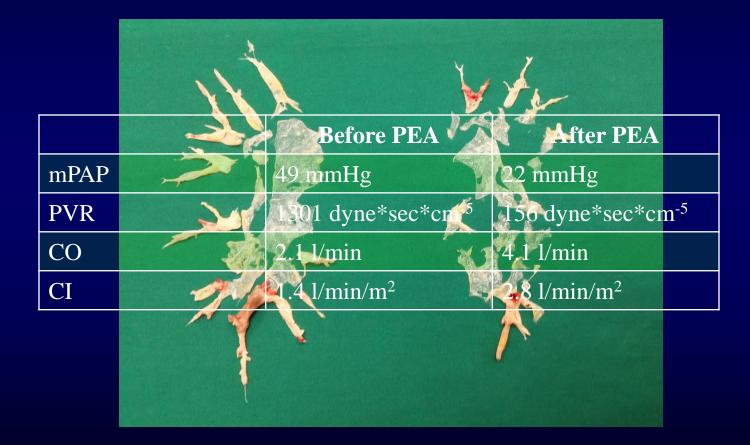
CUMULATIVE PROPORTION SURVIVING OF 780 PEAs

• Full anticoagulation for *at least 3 months*

INDICATIONS FOR SURGERY THREE MONTHS OF ANTICOAGULATION THERAPY

ACQUIRED CARDIOVASCULAR DISEASE

Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry


Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav Lindner, MD,^c Andrea D'Armini, MD,^d Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MD,^g Walter Klepetko, MD,^h Marion Delcroix, MD,^f Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Simonneau, MD,ⁱ and Philippe Dartevelle, MD^j

(J Thorac Cardiovasc Surg 2011;141:702-10)

Inclusion Criteria

At all participating institutions, the diagnosis of CTEPH was established according to clinical guidelines valid at study initiation¹¹ and within 6 months of inclusion in the registry. To qualify for inclusion, patients were to be 18 years or older and to have established pulmonary hypertension as confirmed by mean pulmonary artery pressure (mPAP) 25 mm Hg or greater at rest or 30 mm Hg or greater after exercise and pulmonary capillary wedge pressure 15 mm Hg or less during a right heart catheterization. CTEPH was to be confirmed as the cause of pulmonary hypertension by abnormalities in ventilation/ perfusion scan (including at least 1 mismatched segmental perfusion defect), computed tomography (CT) scan, or pulmonary angiography. Abnormal CT scan/pulmonary angiography demonstrated proximal lesions (webs, bands, and narrowed vessels). Before diagnosis, patients were required to have at least <u>3 months of anticoagulation therapy</u> and no PAH-specific treatment.

INDICATIONS FOR SURGERY THREE MONTHS OF ANTICOAGULATION THERAPY

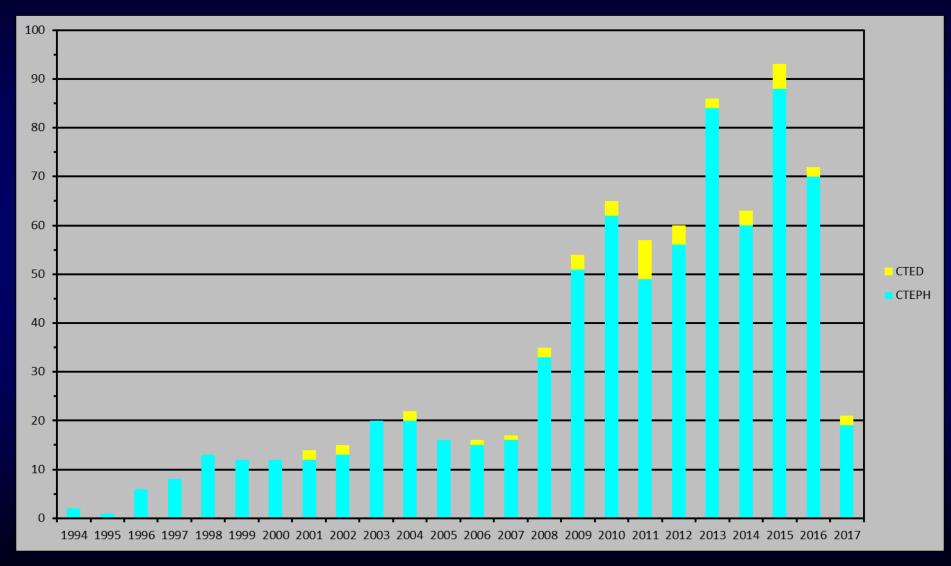
PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE INDICATIONS FOR SURGERY

• The indications for the *surgical treatment* of these patients are based on

CLINIC HEMODYNAMIC

The indications for the *type of surgery* are based on
 ANATOMY

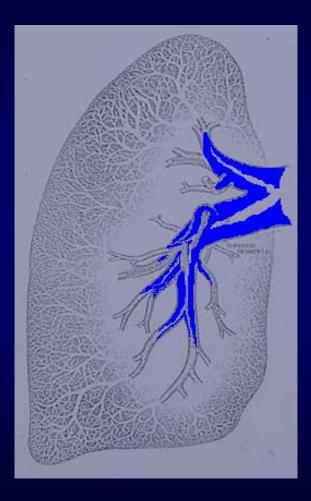
ULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE HENODYNAMIC

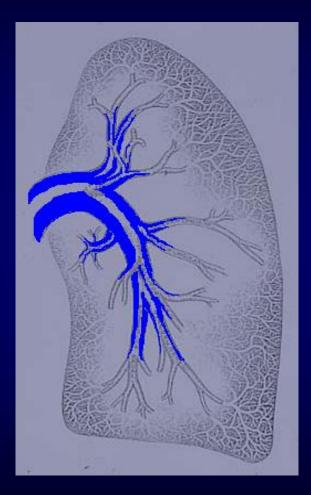

- Pulmonary hypertension (mPAP \ge 25 mmHg)
- Causing low cardiac output

 Resulting in calculated pulmonary vascular resistances (PVR) > 300 dyne*sec*cm⁻⁵

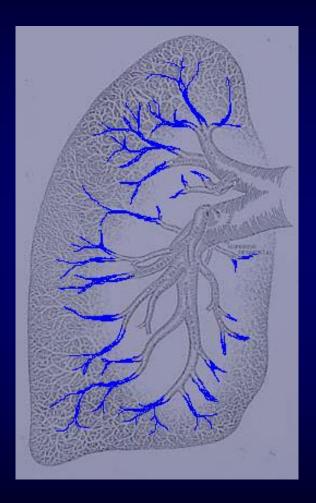
CTEPH & CTED PATIENTS

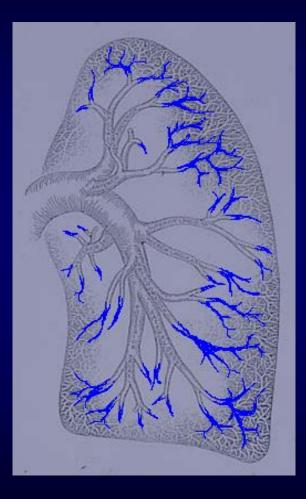
738 & 42 \rightarrow 780 PEAs


PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE INDICATIONS FOR SURGERY


• The indications for the *surgical treatment* of these patients are based on

CLINIC HEMODYNAMIC


The indications for the *type of surgery* are based on
 ANATOMY


PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PROXIMAL LESIONS

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE DISTAL LESIONS

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE EVOLVING SURGICAL TECHIQUE

Morsolini et al

Acquired Cardiovascular Disease

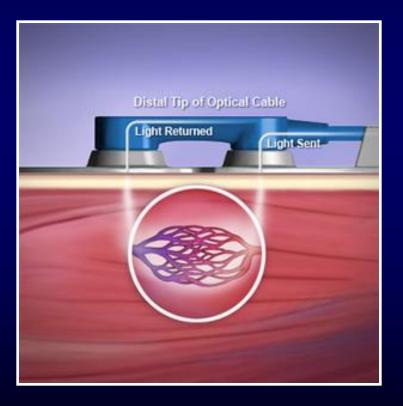
Evolving surgical techniques for pulmonary endarterectomy according to the changing features of chronic thromboembolic pulmonary hypertension patients during 17-year single-center experience

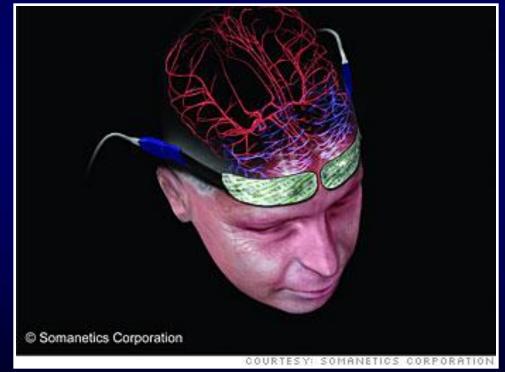
Marco Morsolini, MD,^{a,b} Salvatore Nicolardi, MD,^{a,b} Elisa Milanesi, MD,^c Eleonora Sarchi, MD,^d Gabriella Mattiucci, MD,^a Catherine Klersy, MD, MSc,^e and Andrea Maria D'Armini, MD^a

(J Thorac Cardiovasc Surg 2012;144:100-7)

SURGICAL TREATMENT

	Original San Diego protocol	Pavia protocol
Aortic clamp	Yes	No
Cardioplegia	Yes	No
Hypothermia	Deep (18°C)	Moderate (24°C)
Circulatory arrest	A single (20 minutes) period of circulatory arrest for each side (with a maximum of a third)	Intermittent short periods of circulatory arrest (≈7-10 minutes) followed by short re-perfusion periods (≈5-7 minutes)
Total arrest time	Maximum 60 minutes	Maximum 180 minutes

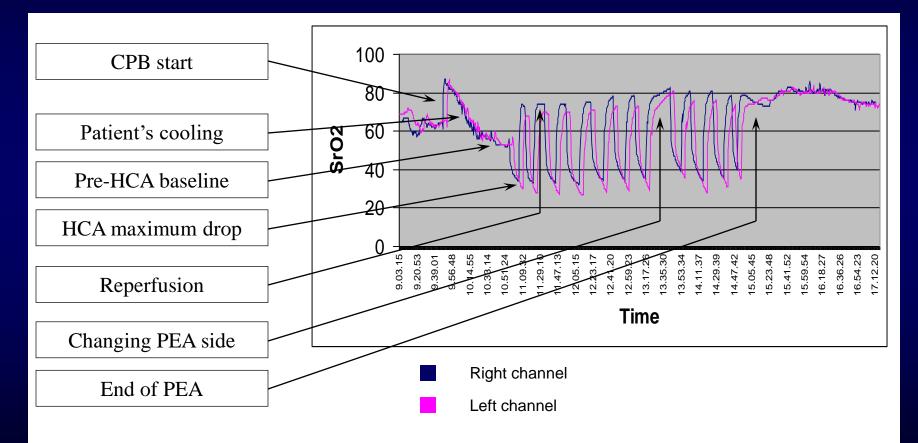

LESS INVASIVE SURGERY


CEREBRAL PROTECTION STRATEGY

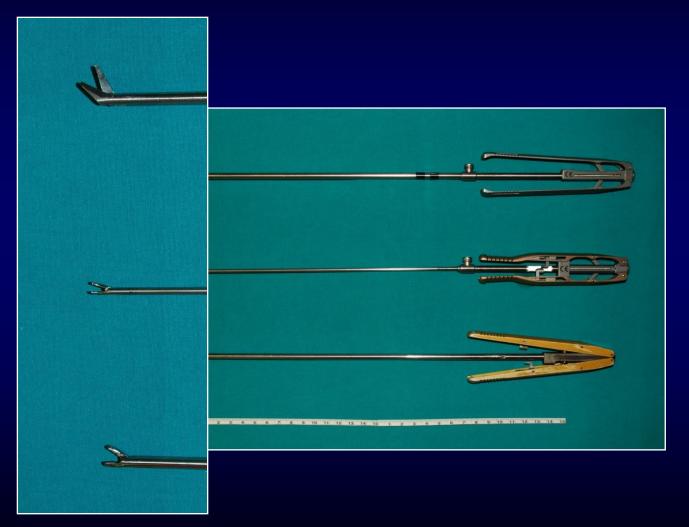
NIRS MONITORING

Near-InfraRed Spectroscopy

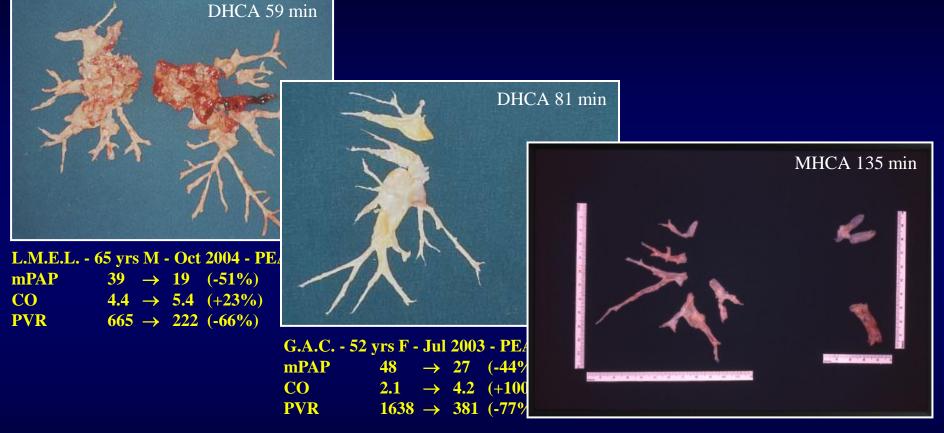
Clinical application



CEREBRAL PROTECTION STRATEGY


NIRS MONITORING

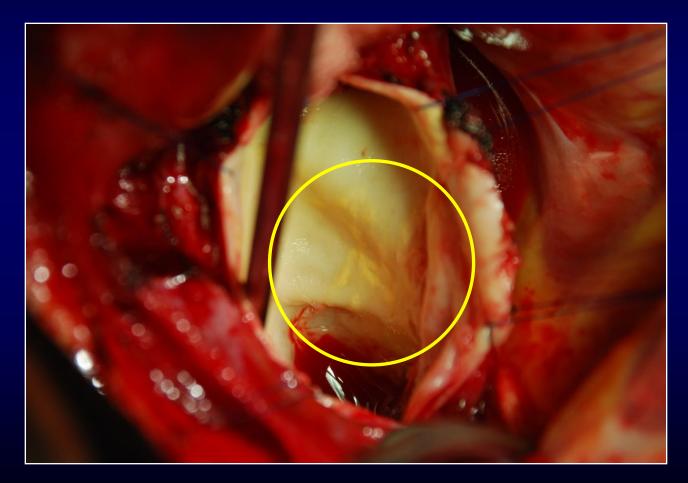
Near-InfraRed Spectroscopy



SURGICAL INSTRUMENTS

Derived from minimally-invasive cardiac surgery

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE JAMESON TYPE I vs. TYPE II vs. TYPE III


B.A 43 yı	rs F - Ma	y 200	9 - PEA #233
mPAP	49	\rightarrow	19 (-61%)
CO	3.3	\rightarrow	5.0 (+52%)
PVR	1067	\rightarrow	224 (-79%)

DHCA, deep hypothermic circulatory arrest;

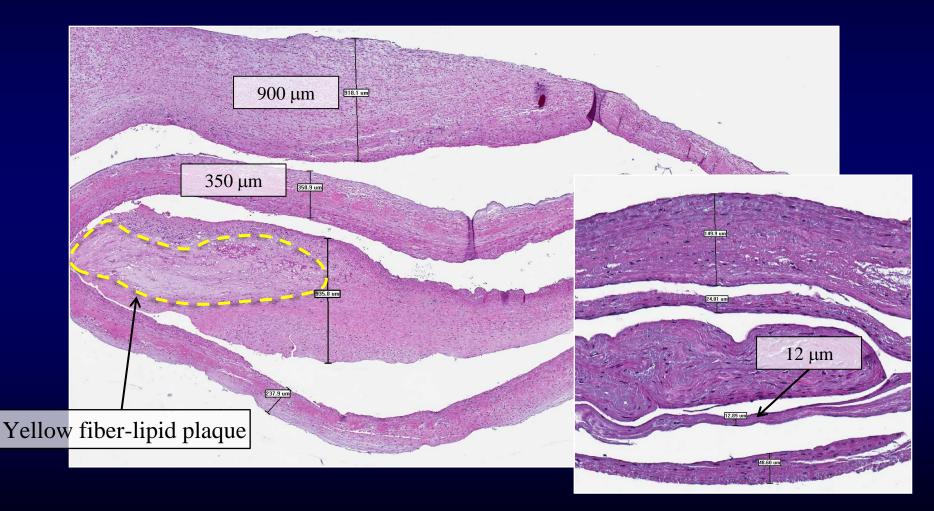
MHCA, moderate hypothermic circulatory arrest.

TRICKS AND TIPS

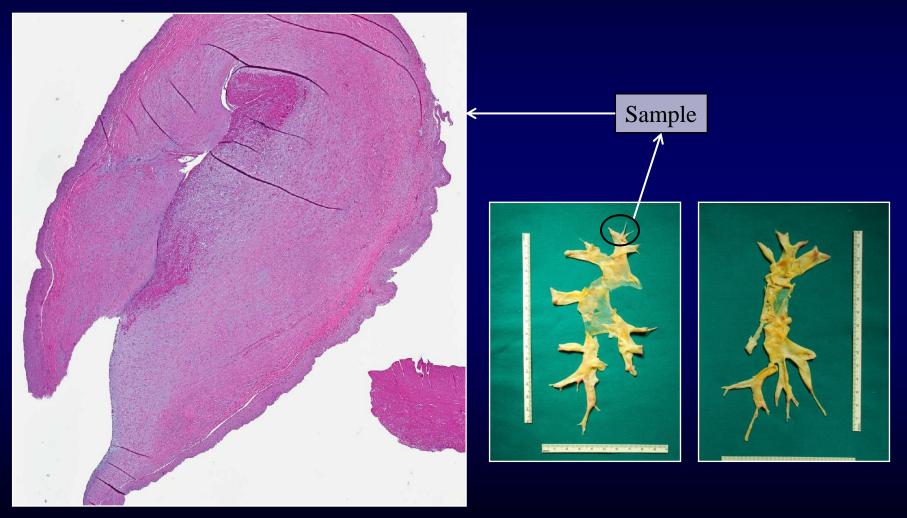
The correct arterial dissection plane Yellow-fibro-lipid plaques included into the removed cast

TRICKS AND TIPS

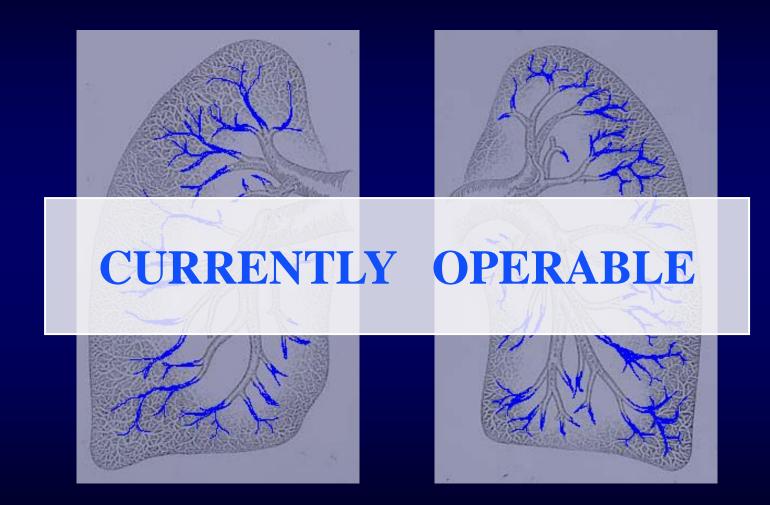
The correct arterial dissection plane Yellow-fibro-lipid plaques included into the removed cast


TRICKS AND TIPS

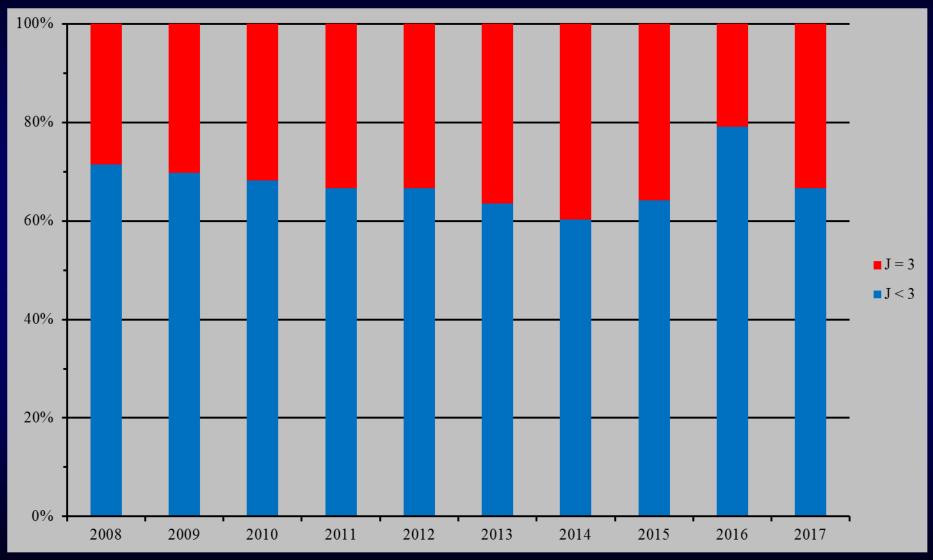
Proximal dissection for the clearance of distal obstructions


TRICKS AND TIPS

Proximal dissection for the clearance of distal obstructions



TRICKS AND TIPS


Proximal dissection for the clearance of distal obstructions

DISTAL LESIONS

JAMIESON TYPE III

D'Armini et al

Acquired Cardiovascular Disease

Pulmonary endarterectomy for distal chronic thromboembolic pulmonary hypertension

Andrea M. D'Armini, MD,^{a,b} Marco Morsolini, MD, PhD,^a Gabriella Mattiucci, MD,^{a,b} Valentina Grazioli, MD,^{a,b} Maurizio Pin, MD,^b Adele Valentini, MD,^c Giuseppe Silvaggio, MD,^b Catherine Klersy, MD, MSc,^d and Roberto Dore, MD^c (J Thorac Cardiovasc Surg 2014;148:1005-12)

DISTAL LESIONS

			P
	Proximal	Distal	value
Bilateral PEA (n)	192 (86.9)	95 (86.4)	1.000
Associated procedures (n)	38 (17.2)	19 (17.3)	1.000
Total CPB time (min)	338 ± 81 (327-348)	361 ± 64 (349-373)	.005
Hypothermia (°C)	24.0 ± 0.9 (23.9-24.1)	23.7 ± 1.0 (23.5-23.8	.003
Total HCA time (min)	84 ± 32 (80-89)	102 ± 28 (97-107)	<.001
PAO2/FIO2 6 h	284 ± 91 (271-296)	280 ± 112 (259-301)	.758
MV duration (d)	2 (1-3)	2 (1-4)	.565
ICU stay (d)	4 (3-7)	4 (3-8)	.962
Postoperative hospital stay (d)	13 (10-16)	13 (11-17)	.541
	6	Risk difference	
	Risk	(95% CI)	P value
Univariate analysis	2		
Hospital mortalit	ly	1.8 (-4.2 to 7.9)	.647
Proximal	6.3%		
Distal	8.1%		
Lung reperfusion	n edema	-0.5 (-4.4 to 3.4)	1.000
Proximal	3.2%		
Distal	2.7%		
Tracheostomy	100.0000	-1.9 (-7.8 to 3.9)	.662
Proximal	8.3%		
Distal	6.4%		
Neurologic even	t -	-4.7 (-10.6 to 1.1)	.209
Proximal	10.2%		
transient 13	/22		
permanent 9	0/22		
Distal	5.5%		
transient 5/0			

Bold values indicate significance (P < .05). CI, Confidence interval; CPB, cardiopulmonary bypass; HCA, hypothermic circulatory arrest; ICU, intensive care unit; MV, mechanical ventilation; $P.\omega_2F\omega_2 = 6$ k, partial pressure of oxygen in arterial blood/ fraction of inspired oxygen ratio 6 hours after admission to ICU; PEA, pulmonary endarterectomy.

	Proximal	Distal
Mean pulmonary arterial p	ressure (mm Hg)	
Preoperative	44 ± 10	46 ± 11
At discharge	22 ± 7	24 ± 6
3-mo follow-up	24 ± 9	25 ± 7
12-mo follow-up	23 ± 7	24 ± 8
P value*	<.001	<.001
PVR (dyne · s · cm ⁻⁵)		
Preoperative	876 ± 392	926 ± 337
At discharge	251 ± 146	295 ± 161
3-mo follow-up	270 ± 175	300 ± 139
12-mo follow-up	243 ± 115	300 ± 224
P value*	<.001	<.001
Cardiac output (L/min)		
Preoperative	3.9 ± 1.3	3.7 ± 1.2
At discharge	5.0 ± 1.2	4.7 ± 1.2
3-mo follow-up	5.2 ± 1.1	5.0 ± 1.2
12-mo follow-up	5.0 ± 1.1	4.7 ± 1.0
P value*	<.001	<.001

PVR, Pulmonary vascular resistance. *Each time point versus preoperative. Test of interaction: P = .975 (mean pulmonary arterial pressure); P = .777 (PVR); P = .825 (cardiac output).

TABLE	4. Par	rtial p	ressure of o	oxygen in	arterial bl	ood, n	nodified	Bruce
exercise	test,	and	6-minute	walking	distance	time	course	after
pulmona	ry en	darte	rectomy			0001110	Section Constraint	

	Proximal	Distal
Arterial partial pressure o	f oxygen (mm Hg)	
Preoperative	65 ± 12	66 ± 11
3-mo follow-up	82 ± 13	80 ± 11
12-mo follow-up	80 ± 11	80 ± 11
P value*	<.001	<.001
Modified Bruce exercise	test (m)	
Preoperative	51 (0-143)	52 (0-102)
3-mo follow-up	495 (182-658)	435 (143-586)
12-mo follow-up	520 (261-709)	474 (225-620)
P value*	<.001	<.001
6-min walking distance (I	n)	
Preoperative	277 ± 118	289 ± 112
3-mo follow-up	391 ± 118	398 ± 107
12-mo follow-up	389 ± 118	396 ± 112
P value*	<.001	<.001

*Each time point versus preoperative. Test of interaction: P = .317 (partial pressure of oxygen in arterial blood); P = .205 (modified Bruce exercise test); P = .962 (6-min walking distance).

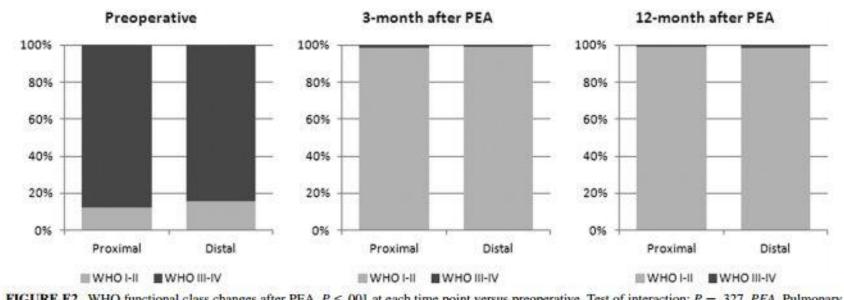
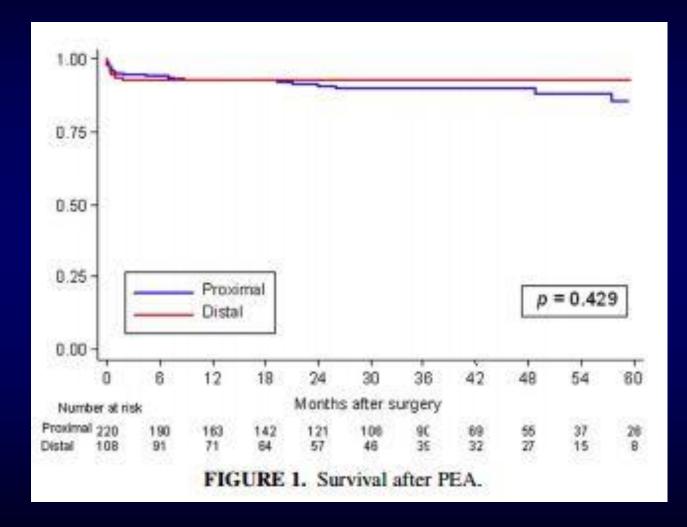



FIGURE E2. WHO functional class changes after PEA. P < .001 at each time point versus preoperative. Test of interaction: P = .327. PEA, Pulmonary endarterectomy; WHO, World Health Organization.

PEA SPECIMEN

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PEA EXPERT CENTER

European Heart Journal (2009) **30**, 2493–2537 doi:10.1093/eurheartj/ehp297 **ESC/ERS GUIDELINES**

Guidelines for the diagnosis and treatment of pulmonary hypertension

The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT)

A centre can be considered to have sufficient expertise in this field if it performs at least 20 PEA operations per year with a mortality rate <10%.

PEA CENTER EXPERT BETTER DEFINITION

Surgical management and outcome of patients with chronic thromboembolic pulmonary hypertension: Results from an international prospective registry

Eckhard Mayer, MD,^a David Jenkins, FRCS,^b Jaroslav Lindner, MD,^c Andrea D'Armini, MD,^d Jaap Kloek, MD,^e Bart Meyns, MD,^f Lars Bo Ilkjaer, MD,^g Walter Klepetko, MD,^h Marion Delcroix, MD,^f Irene Lang, MD,^h Joanna Pepke-Zaba, MD,^b Gerald Simonneau, MD,ⁱ and Philippe Dartevelle, MD^j

	Average no. of PEAs per year			
	1-10	11-50	>50	Combined
No. of centers performing PEA, n (%)	6 (35.3%)	8 (47.1%)	3 (17.6%)	17*
No. of patients, n (%)	54 (14.0%)	191 (49.5%)	141 (36.5%)	386*
Change in PVR from diagnosis to end of intensive	-476 NS	-476†	-400‡	-457
care, dyn.s.cm ⁻⁵ , median (range), n	(-1760 to 80)	(-2256 to 22)	(-2261 to 554)	(-2261 to 554)
	n = 43	n = 144	n = 65	n = 252
Death, n (%)§				
In-hospital	4 (7.4%) NS	9 (4.7%) NS	5 (3.5%)§	18 (4.7%)
1 y after PEA	6 (11.1%) NS	14 (7.3%) NS	7 (5.0%)§	27 (7.0%)

(J Thorac Cardiovasc Surg 2011;141:702-10)

NS, Not significant; *PEA*, pulmonary endarterectomy; *PVR*, pulmonary vascular resistance. *Two patients underwent operations in 2 nonparticipating centers performing > 50 PEAs per year and < 10 PEAs per year, respectively. NS compared with \ddagger (Wilcoxon 2-sample test) or \S (Fisher's exact test). $\ddagger P < .05$ compared with \ddagger (Wilcoxon 2-sample test).

Chronic Thromboembolic Pulmonary Hypertension

Nick H. Kim, MD,* Marion Delcroix, MD,† David P. Jenkins, MB BS,‡ Richard Channick, MD,§ Philippe Dartevelle, MD,|| Pavel Jansa, MD,¶ Irene Lang, MD,# Michael M. Madani, MD,* Hitoshi Ogino, MD, PHD,** Vittorio Pengo, MD,†† Eckhard Mayer, MD‡‡

(J Am Coll Cardiol 2013;62:D92-9) © 2013

bility assessment by a CTEPH team (Fig. 2). Because the operability assessment remains complex, we recommend that only an experienced CTEPH team should determine that a case of CTEPH is inoperable. Furthermore, recognizing the subjective nature of the operability assessment process, we encourage a re-evaluation of operability by a second experienced CTEPH center, whenever feasible, in cases initially deemed inoperable. In cases of operable CTEPH, medical

PEA EXPERT CENTER PROPOSED DEFINITION

• In most recent guidelines

no definition of PEA expert center no suggestion of second opinion

REFERENCE

Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension

David Jenkins¹, Michael Madani², Elie Fadel³, Andrea Maria D'Armini⁴ and Eckhard Mayer⁵

Eur Respir Rev 2017; 26: 160111

REFERENCE

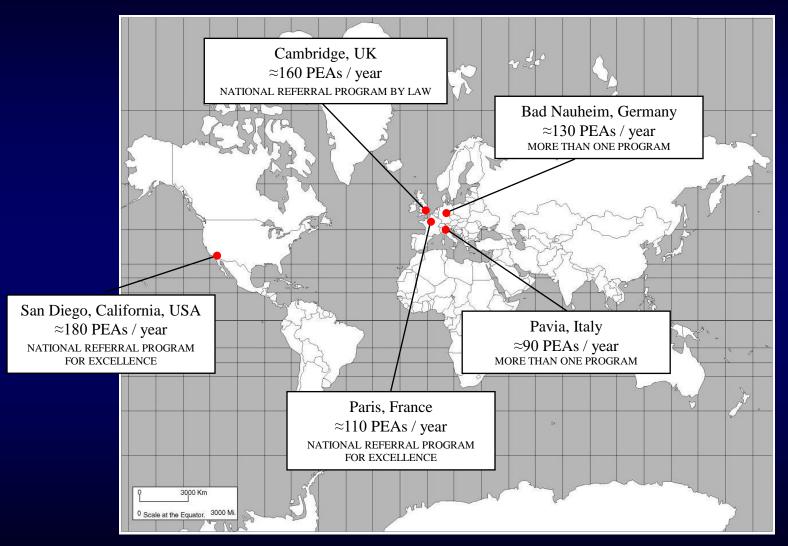
TABLE 2 Characteristics of an expert centre

Extensive experience with cardiothoracic surgery, including procedures requiring DHCA Excellent pulmonary and cardiac services Emphasis on pulmonary hypertension Expert diagnostic imaging Experienced multidisciplinary team comprising surgeons, radiologists, anaesthetists, intensivists, nurses, perfusionists, respiratory therapists and interventionalists, including specialists experienced in BPA

DHCA: deep hypothermic circulatory arrest; BPA: balloon pulmonary angioplasty. Data from [12].

Eur Respir Rev 2017; 26: 160111

REFERENCE


TABLE 3	Proposed	identification	criteria of	fexpert	or high	-quality	centres

Level of expertise		Criteria	
I	30-day or in-hospital mortality <5%		
н	30-day or in-hospital mortality <5%	plus ≥50 procedures year ⁻¹	
	30-day or in-hospital mortality <5%	plus ≥50 procedures∙year ⁻¹	plus ability to perform segmental endarterectomy/operate on distal disease plus ability to provide PEA, BPA and medical therapy

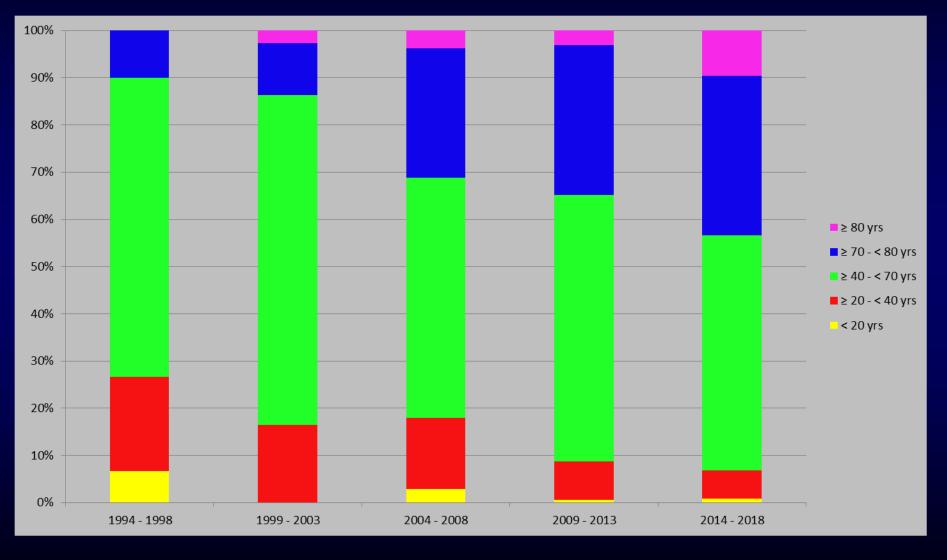
PEA: pulmonary endarterectomy; BPA: balloon pulmonary angioplasty.

Eur Respir Rev 2017; 26: 160111

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE MAIN WORLD PEA CENTERS

European Heart journal doi:10.1093/eurheart/jehv317

ESC/ERS GUIDELINES

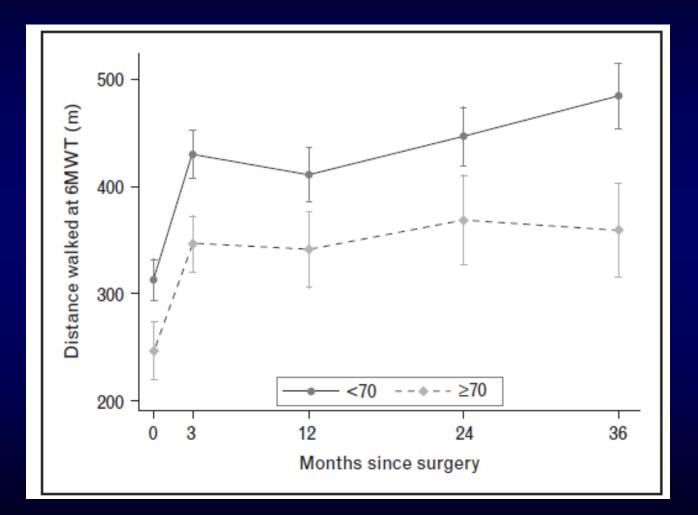

2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension

The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS)

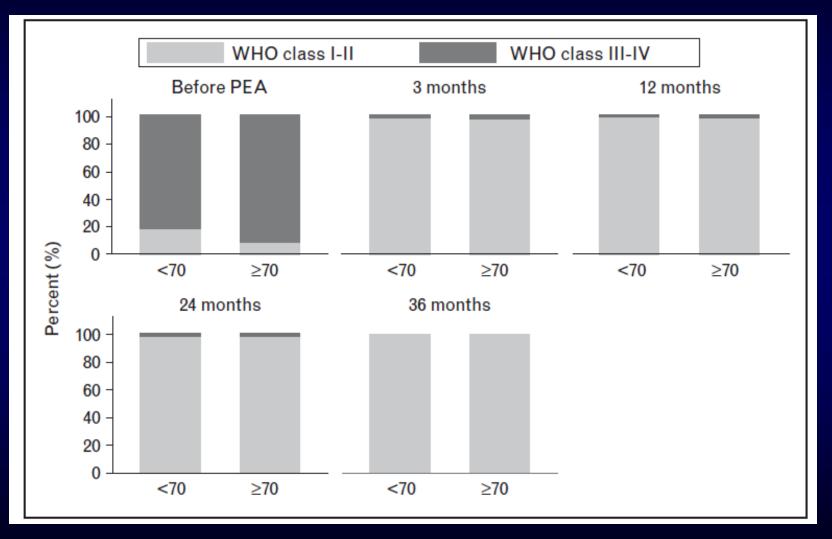
I. Pulmonary arterial hypertension
 1.1 Idiopathic 1.2 Heritable 1.2.1 BMPR2 mutation 1.2.2 Other mutations 1.3 Drugs and toxins induced 1.4 Associated with: 1.4.1 Connective tissue disease 1.4.2 Human immunodeficiency virus (HIV) infection 1.4.3 Portal hypertension 1.4.4 Congenital heart disease (Table 6) 1.4.5 Schistosomiasis
I'. Pulmonary veno-occlusive disease and/or pulmonary capillary haemangiomatosis
 I'.1 Idiopathic I'.2 Heritable I'.2.1 EIF2AK4 mutation I'.2.2 Other mutations I'.3 Drugs, toxins and radiation induced I'.4 Associated with: I'.4.1 Connective tissue disease I'.4.2 HIV infection
I". Persistent pulmonary hypertension of the newborn
2. Pulmonary hypertension due to left heart disease
 2.1 Left ventricular systolic dysfunction 2.2 Left ventricular diastolic dysfunction 2.3 Valvular disease 2.4 Congenital / acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathies 2.5 Congenital /acquired pulmonary veins stenosis

 Fulmonary hypertension due to lung diseases and/or hypoxia 	
 3.1 Chronic obstructive pulmonary disease 3.2 Interstitial lung disease 3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 3.4 Sleep-disordered breathing 3.5 Alveolar hypoventilation disorders 	
3.6 Chronic exposure to high altitude 3.7 Developmental lung diseases (Web Table III)	
4. Chronic thromboembolic pulmonary hypertension and other pulmonary artery obstructions	4%
 4.1 Chronic thromboembolic pulmonary hypertension 4.2 Other pulmonary artery obstructions 4.2.1 Angiosarcoma 4.2.2 Other intravascular tumors 4.2.3 Arteritis 4.2.4 Congenital pulmonary arteries stenoses 4.2.5 Parasites (hydatidosis) 	
5. Pulmonary hypertension with unclear and/or multifactorial mechanisms	,
 5.1 Haematological disorders: chronic haemolytic anaemia, myeloproliferative disorders, splenectomy 5.2 Systemic disorders, sarcoidosis, pulmonary histiocytosis, lymphangiolelomyomatosis 5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders 5.4 Others: pulmonary tumoral thrombothic microangiopathy, 	
fibrosing mediastinitis, chronic renal failure (with/without dialysis), segmental pulmonary hypertension	

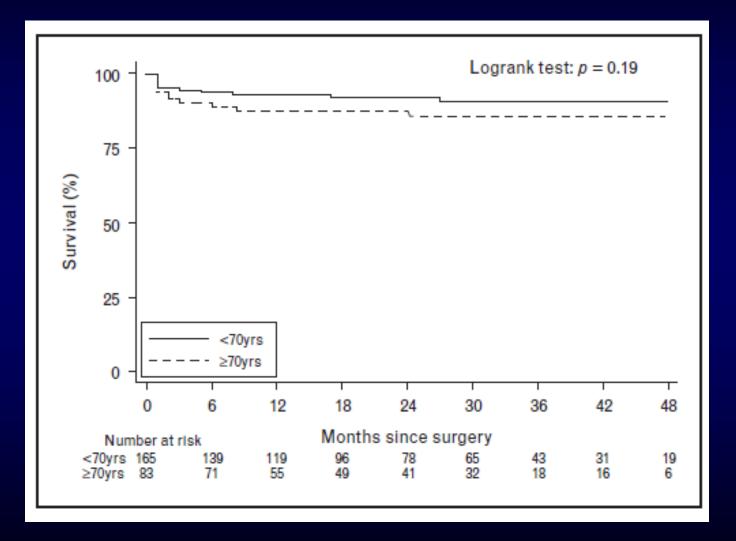
AGE OF 780 PEAs


ELDERLY PATIENTS

Pulmonary endarterectomy in the elderly: safety, efficacy and risk factors


Nicola Vistarini^a, Marco Morsolini^a, Catherine Klersy^b, Gabriella Mattiucci^a, Valentina Grazioli^a, Maurizio Pin^a, Stefano Ghio^c and Andrea Maria D'Armini^a

J Cardiovasc Med 2016, 17:144-151


ELDERLY PATIENTS

ELDERLY PATIENTS

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE ELDERLY PATIENTS

PAVIA CTEPH PROGRAM

January, 1^{st} – December, 31^{st} 2016 \rightarrow 436

New Evaluations (204 pts)

CTEPH-PEA FUP (226 pts)

PAS-PEA FUP (6 pts)

CONFIRMED (100 pts)

- PROXIMAL LESIONS (92 pts)
 - 72 PEAs (8 pts evaluated in 2015)
 - 3 waiting for PEA
 - 5 refused evaluation for PEA
 - 2 refused PEA
 - 13 with severe co-morbidities
 - 3 died before evaluation or before PEA
 - 1 association with severe emphysema
 - 1 complete occlusion with vessel retraction

OPERABILITY RATE the cnically

+ refused 85%

92%

+ comorbility 70%

- PERSISTENT / RECURRENT PH (1 pt)
- 1 medical therapy
- DISTAL LESIONS (7 pts)
- 6 controindication for DLTx
- 1 too early for DLTx

OTHER DIAGNOSIS (104 pts)

- BPA evaluation (4 pts) 4 waiting
- RECENT APE (30 pts)
- 29 mt 1 mt+ECMO
- PREVIOUS APE WITHOUT SIGNS (12 pts)
- 12 medcal therapy
- APE OVER CTE LESIONS (3 pts)
- 3 3-month m.t.→new evaluation
- MINIMAL CTE LESIONS WITHOUT/LOW PH (12 pts)
 - 12 medical therapy
- PULMONARY ARTERY SARCOMA (10 pts)
- 8 PEAs 1 inoperable 1 refused PEA
- PULMONARY ARTERY ANEURYSM (2 pts)
- -2 medical therapy
- MISCELLANEOUS (30 pts)
- 10 Eisenmenger
 9 PAH
 3 Talassemia&splenectomy
 2 PVOD
 1 PH by hydatid cystic embolism
 1 HIV
 1 Mediastinal fibrosis
 1 1&4
 1 Systemic sclerosis
 1 1&5

BENEFIT STUDY

CLINICAL RESEARCH

Clinical Trials

Bosentan for Treatment of Inoperable Chronic Thromboembolic Pulmonary Hypertension

BENEFiT (Bosentan Effects in iNopErable Forms of chronIc Thromboembolic pulmonary hypertension), a Randomized, Placebo-Controlled Trial

Xavier Jaïs, MD,* Andrea M. D'Armini, MD,† Pavel Jansa, MD,‡ Adam Torbicki, MD,§ Marion Delcroix, MD,|| Hossein A. Ghofrani, MD,¶ Marius M. Hoeper, MD,# Irene M. Lang, MD,** Eckhard Mayer, MD,†† Joanna Pepke-Zaba, MD,‡‡ Loïc Perchenet, PHD,§§ Adele Morganti, MSc,§§ Gérald Simonneau, MD,* Lewis J. Rubin, MD,|||| for the BENEFiT Study Group

Clamart, France; Pavia, Italy; Prague, Czech Republic; Warsaw, Poland; Leuven, Belgium; Giessen, Hannover, and Mainz, Germany; Vienna, Austria; Cambridge, United Kingdom; Allschwil, Switzerland; and La Jolla, California (J Am Coll Cardiol 2008;52:2127-34)

CHEST STUDY

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Riociguat for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Hossein-Ardeschir Ghofrani, M.D., Andrea M. D'Armini, M.D., Friedrich Grimminger, M.D., Marius M. Hoeper, M.D., Pavel Jansa, M.D., Nick H. Kim, M.D., Eckhard Mayer, M.D., Gerald Simonneau, M.D., Martin R. Wilkins, M.D., Arno Fritsch, Ph.D., Dieter Neuser, M.D., Gerrit Weimann, M.D., and Chen Wang, M.D., for the CHEST-1 Study Group*

BALLON PULMONARY ANGIOPLASTY

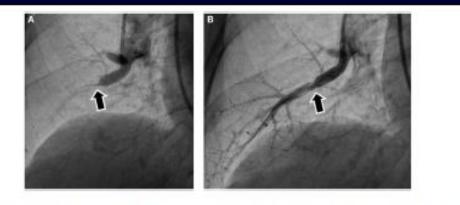


FIGURE 2.) Pulmonary anglography before and after balloon pulmonary angloplasty (BPA). (A) Subtotal obstruction was noted in the pulmonary anglography bolore BPA (arrow). (B) Pulmonary angiography after BPA showed blood flow to the peripheral arteries after balloon dilatation. The arrow indicates the same site as the arrow in (A).

frontiers in	
CARDOVASCULAR	MED C NE

REVIEWS IN MEDICINE published: 17 February 2015

Balloon pulmonary angioplasty: a treatment option for inoperable patients with chronic thromboembolic pulmonary hypertension

Aiko Ogawa * and Hiromi Matsubara Deputment of Cheal Science, Netional Hospital Cirpanzation Oksyama Modical Conter, Oksyama, Japa

- An option for *INOPERABLE* pts, *HIGH SURGICAL RISK* pts, *REFUSED PEA* pts, *POST-PEA* pts
- Important to performed BPA in expert Centre able to offer all options to the pts and with a high volume pts
- *BPA program* started in *Pavia* on *February 2017*: to date *3 pts treated* out of a total of 8 *pts evaluated and ready* for BPA

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE PRIMARY PULMONARY ARTERY SARCOMA

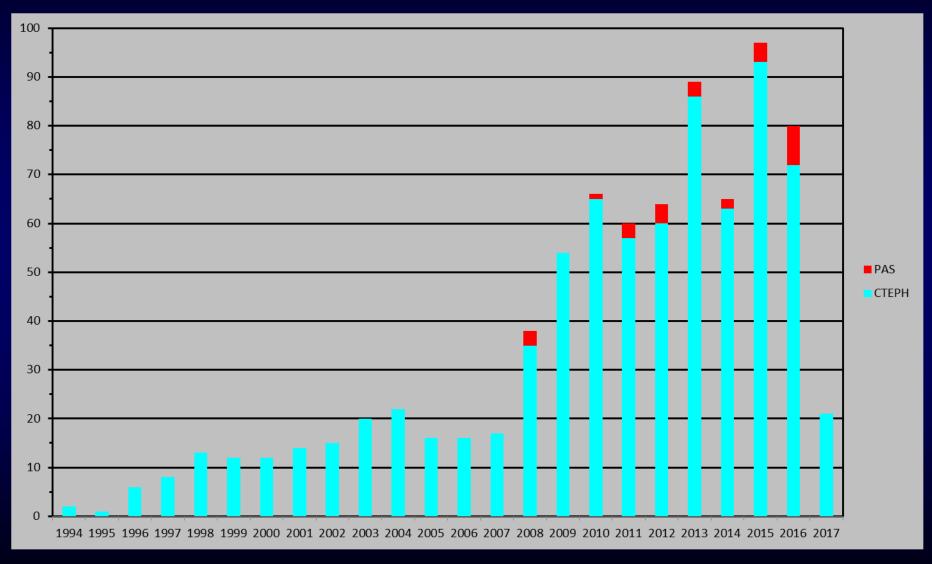
Grazioli et al

Acquired Cardiovascular Disease

Surgical treatment of primary pulmonary artery sarcoma

Valentina Grazioli, MD,^a Nicola Vistarini, MD,^a Marco Morsolini, MD, PhD,^a Catherine Klersy, MD, MSc,^b Giulio Orlandoni, MD,^a Roberto Dore, MD,^c and Andrea Maria D'Armini, MD^a Cardiovasc Surg 2014;148:113-8)

PULMONARY ENDARTERECTOMY: THE PAVIA EXPERIENCE OTHER TYPE OF OBSTRUCTIONS:


primary pulmonary artery sarcoma

Bilateral PEA + pulmonary valve replacement (Carpentier Edwards 21)

CTEPH & PAS PATIENTS

780 & 28 \rightarrow 808 PEAs

