

Il trattamento chirurgico dell'insufficienza tricuspidalica: tecniche, risultati e limiti

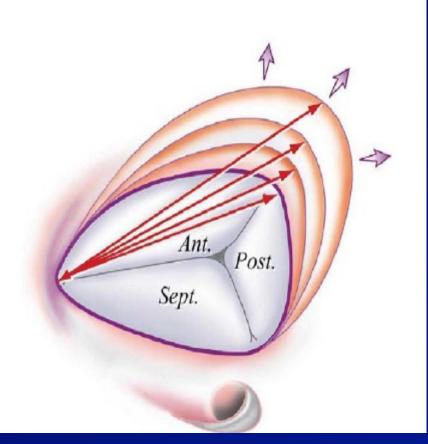
De Bonis Michele, MD, FESC Vita-Salute San Raffaele University Department of Cardiac Surgery, San Raffaele Hospital, Milan, Italy

Tricuspid regurgitation: most common surgical scenarios

Functional TR in patients undergoing left-

sided valve surgery

Late TR following left sided valve surgery


Tricuspid regurgitation: most common surgical scenarios

 Functional TR in patients undergoing leftsided valve surgery

Late TR following left sided valve surgery

Tricuspid annulus dilatation Asymmetric annular dilatation

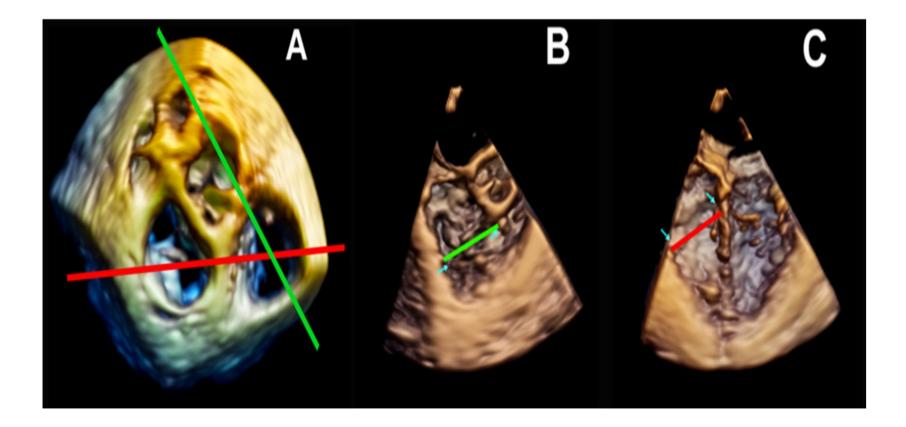
Dreyfus G et al. Ann Thorac Surg 2005;79:127–32

Antero-septal to antero-posterior commissure distance > 7 cm

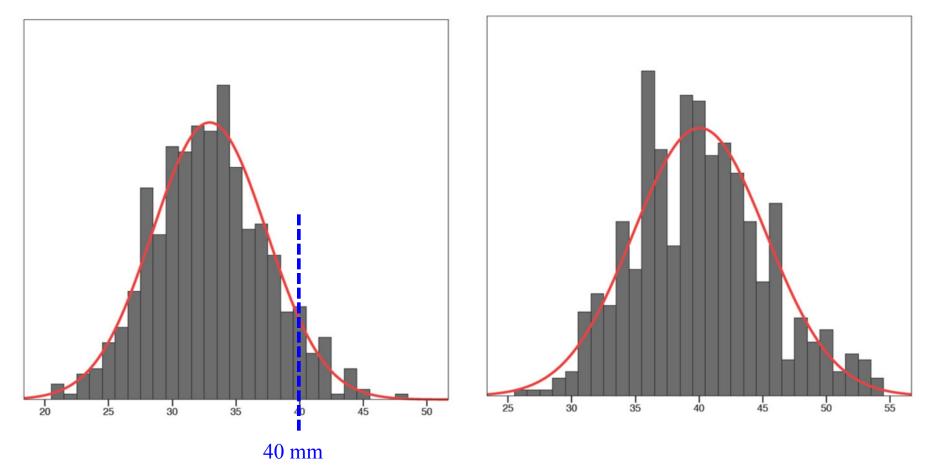
Tricuspid annulus dilatation

TT apical 4-chamber view in late diastole

Surgical view



\geq 4 cm or 21 mm/m2


septal to anterior leaflet distance

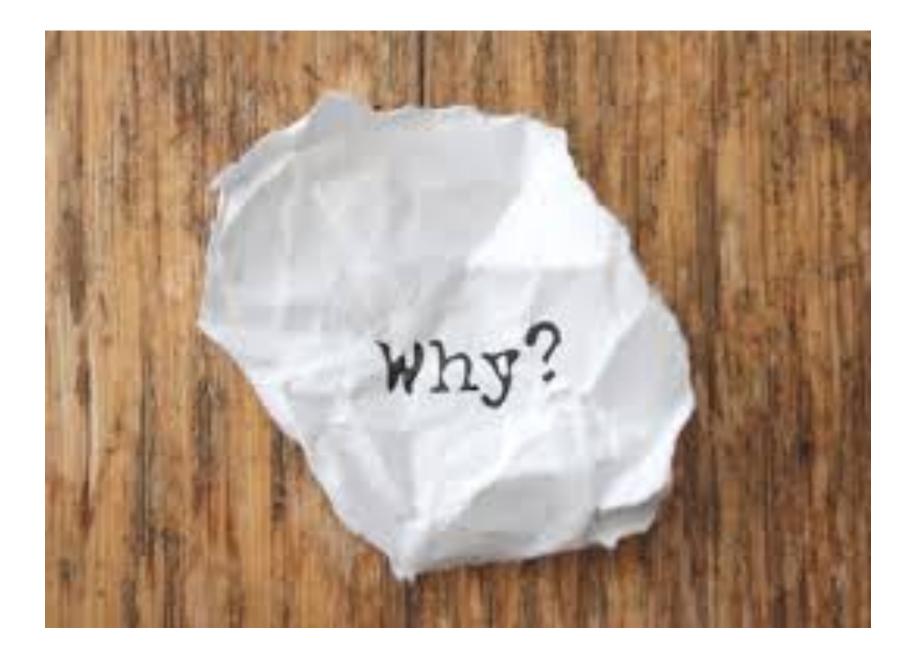
San Raffaele University

- Tricuspid valve evaluation in early MV repair pts-

Distribution of pre-operative tricuspid annulus diameters at TEE

Septo-lateral diameter (mm)

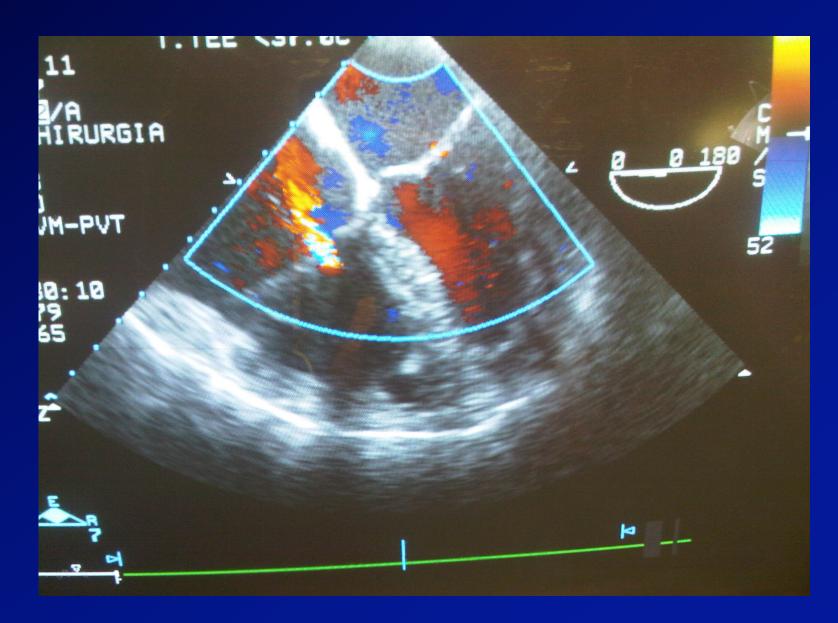
Antero-posterior diameter (mm)

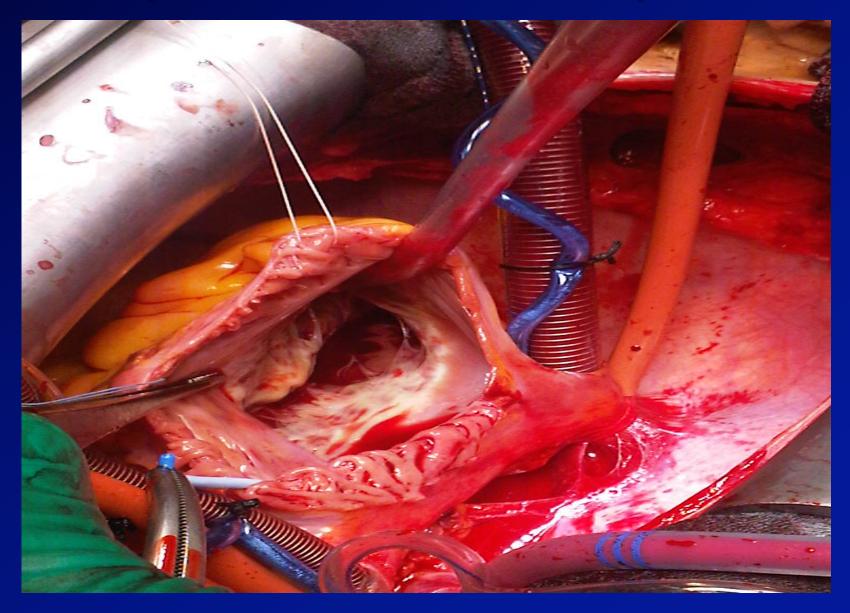

Using a cut-off \geq 40 mm or \geq 21 mm/m², 49 (6.9%) and 65 (9.2%) patients had preoperative SL dilatation, respectively

Guidelines on the management of valvular heart disease (version 2012)

	Class ^a	Level ^b
Surgery is indicated in symptomatic patients with severe TS. ^c	I	С
Surgery is indicated in patients with severe TS undergoing left-sided valve intervention. ^d	I	С
Surgery is indicated in patients with severe primary or secondary TR undergoing left-sided valve surgery.	T	С
Surgery is indicated in symptomatic patients with severe isolated primary TR without severe right ventricular dysfunction.	I	С
Surgery should be considered in patients with moderate primary TR undergoing left-sided valve surgery.	lla	С
Surgery should be considered in patients with mild or moderate secondary TR with dilated annulus (≥40 mm or >21 mm/m ²) undergoing left-sided valve surgery.	lla	с
Surgery should be considered in asymptomatic or mildly symptomatic patients with severe isolated primary TR and progressive right ventricular dilatation or deterioration of right ventricular function.	lla	С
After left-sided valve surgery, surgery should be considered in patients with severe TR who are symptomatic or have progressive right ventricular dilatation/dysfunction, <i>in</i> <i>the absence</i> of left-sided valve dysfunction, severe right or left ventricular dysfunction, and severe pulmonary vascular disease.	lla	С

Should prophylactic tricuspid annuloplasty be performed at the time of mitral valve surgery?



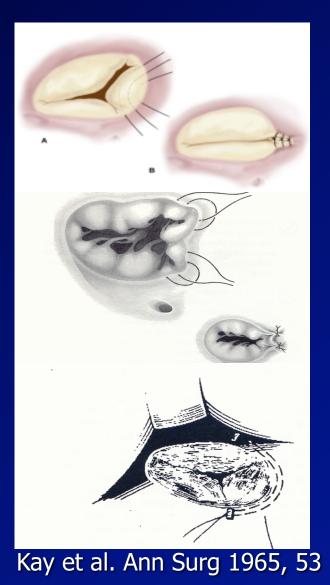

There are no strong randomized data!

Mild-moderate functional TR

Intraoperative view of the tricuspid valve

Predictors of progression of less than severe functional TR

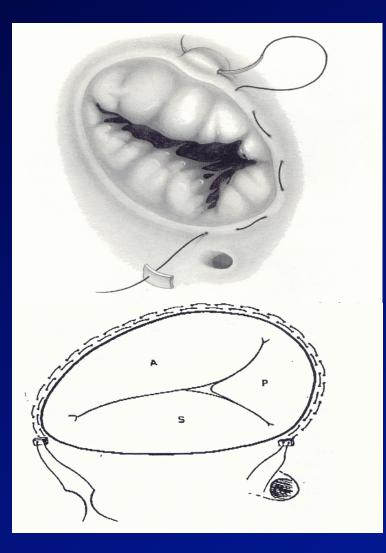
- LV dysfunction
- RV dilatation/dysfunction
- AF
- Pace-maker leads
- PHT
- Etiology
 - Rheumatic
 - Dilated cardiomyopathy



Surgical techniques

- Annular plication by suture annuloplasty
 - Localized
 - Kay repair (bicuspidization)
 - Semicilrcular
 - De Vega repair
- Reduction annuloplasty with flexible rings
 - SJM Tailor Annuloplasty ring
 - Cosgrove-Edwards ring
 - Duran ring
- Remodeling annuloplasty with semi-rigid rings
 - Medtronic 3D Contour
 - Edwards MC3 system
- Clover technique

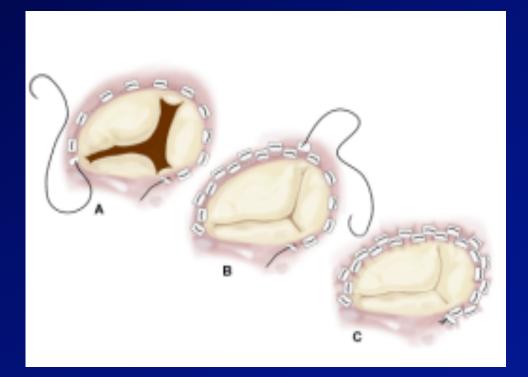
Annular plication Kay repair (bicuspidization)


Bicuspidization of the TV byexclusion of the posteriorleaflet

Simple, fast, unexpensive andsafe (conduction systemavoided)

 Late dilatation of the anterior annulus

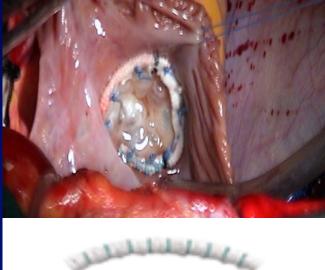
Semicircular annuloplasty (De Vega)


Simple, fast, unexpensive
No prosthetic material
No AVN injury

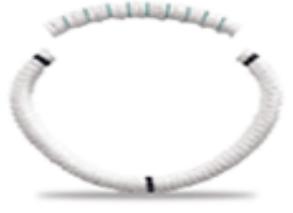
 Significant late recurrence of TR

De Vega et al. Rev Esp Cardiol. 1972, 25.

Modified De Vega repair



Avoid tearing of the suture


Antunes et al. Ann Thorac Surg. 1983, 6.

Reduction annuloplasty SJM Tailor Annuloplasty ring

- Prevents recurrent annular dilatation
- Allows dynamic changes of the annulus

Disadvantages

- Does not restore the physiological shape of the annulus
- Risk of overcorrection

Remodeling annuloplasty Edwards MC³ tricuspid annuloplasty system

Near complete and semirigid

 3D design accomodating the saddle shaped tricuspid annulus

Stress on sutures minimized

New remodeling rings

Tri-Ad[™] Adams Tricuspid Annuloplasty Ring

Targeted, semi-rigid remodeling for tricuspid disease

Our newest ring technology expands your treatment options for tricuspid repair. Anchored by a semi-rigid segment and supported by flexible, soft segments for suturing delicate tissue, the Tri-Ad ring offers the first ring designed for targeted remodeling of tricuspid disease. The design adapts to the three-dimensional geometry of the tricuspid valve in systole and diastole. A braided sewing ring construction also provides smooth needle penetration and prevents bunching for easy implantation.

Contour 3D[™] Tricuspid Annuloplasty Ring

Natural dimensions for tricuspid valve repair

This is our most innovative ring to date. The unique design is based on CT data from functional human tricuspid valves. The result is a three-dimensional remodeling ring, anatomically shaped to the normal tricuspid annulus. Contour 3D is also the first annuloplasty system to offer single-use and reusable sizers. It features an open design to avoid the conduction system and septal lateral compression to address annular dilation. Add smooth needle penetration and a low-profile, and you have a unique and innovative option for tricuspid repair.

Persistent/recurrent functional TR is still a problem

Significant rate of tricuspid annuloplasty failure

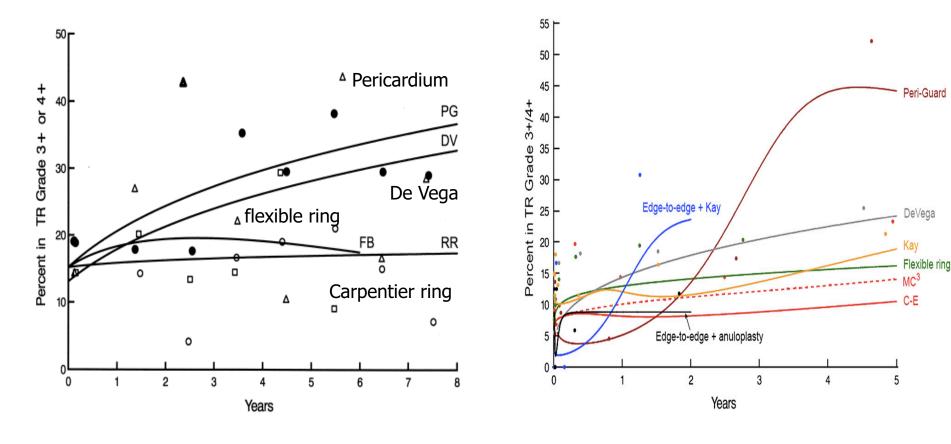
TABLE 3. Predicted prevalence across time of grades 3+ and 4+ tricuspid valve regurgitation for various annuloplasty techniques*

Technique	TR grade	1 month		1 year		5 years		8 years	
		%	CL (%)	%	CL (%)	%	CL (%)	%	CL (%)
Carpentier	3+	10	9-11	10	9-12	11	9-13	11	8-14
	4+	5.2	4.6-5.9	5.5	4.7-6.3	6	4.3-7.4	6	4-8
Cosgrove	3+	10	9-11	12	11-13	12	9-14		N/A
°	4+	5.3	4.6-6.0	6	6-7	6	5-8	N/A	
De Vega	3+	9	8-10	12	10-13	17	15-20	20	17-22
5	4+	4.6	4-5	6	5-7	11	9-13	13	10-16
Peri-Guard	3+	10	9-11	13	12-14	19	17-21	22	19-24
	4+	5.4	4.8-6.0	7	6-8	13	10-15	15	12-18
Overall	3+	10	9-11	13	11-14	15	14-17	19	17-21
	4+	5	5-6	7	6-8	9	8-10	12	10-15

TR, Tricuspid regurgitation; CL, 68% confidence limits; N/A, not applicable (not enough patients in follow-up at this time).

*Model-based time-related estimates (%).

McCarthy et al. JTCVS 2004;127:675

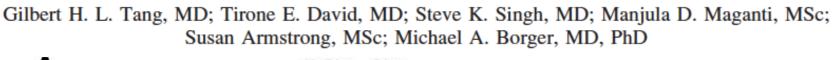

Tricuspid repair and durability

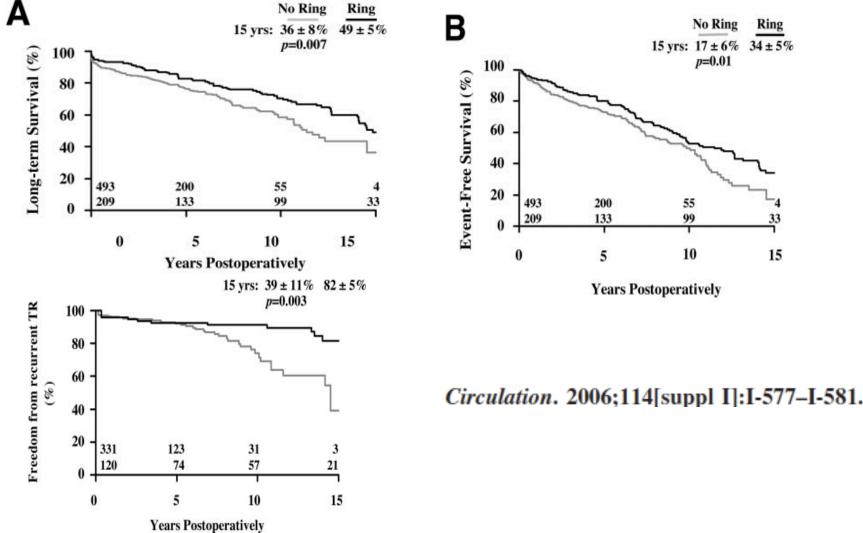
	Number of		Recurrent TR (% of Patients)
Authors	Patients	Technique	at Last Follow-up
Rivera et al, 19856	83	De Vega	34 ^{3.8} yrs
		C-E ring	10 ^{3.8 yrs}
Matsuyama et al, 2001 ⁷	45	De Vega	45 ^{3.3 yrs}
-		C-E ring	6 ^{3.3 yrs}
McCarthy et al, 2004 ²	795	De Vega	33 ^{8 yrs}
		Peri-Guard	37 ^{8 yrs}
		Flexible band	18 ^{5 yrs}
		C-E ring	17 ^{8 yrs}
Bonis et al, 2004 ⁵	14	Clover	0 ^{1.1 yrs}
Tang et al, 2006 ¹⁰	702	De Vega	61 ^{15 yrs}
-		Rings and band (Duran, CE, flexible)	17 ^{15 yrs}
Filsoufi et al, 2006 ¹¹	75	MC3 Ring	0 1.3 yrs
Fukuda et al, 2007 ⁹	136	MC3 Ring	14 ^{>1 yr}
Ghanta et al, 20071	237	Bicuspidization	25 ^{3 yrs}
		Rings and band (Duran, CE, flexible)	31 ^{3 yrs}
Chang et al, 2008 ³	334	De Vega/Kay	28 ^{8 yrs}
		Pericardial strip	13 ^{8 yrs}
Dreyfuss et al, 2008 ⁴	15	Tricuspid leaflet augmentation	0 0.5-1.7 yrs
Sarraj et al, 2009 ¹³	17	Adjustable segmental	18 ^{2.5 yrs}
Roshanali et al, 200914	210	De Vega	28 ^{1 yr}
-		C-E ring	14 ^{1 yr}
		De Vega + pericardial patch	10 ^{1 yr}
		C-E Ring + pericardial patch	8 ^{1 yr}

TR, tricuspid regurgitation.

Semin Thoracic Surg 22:97-103

Current results of tricuspid annuloplasty are suboptimal




McCarthy et al. JTCVS 2004;127:675

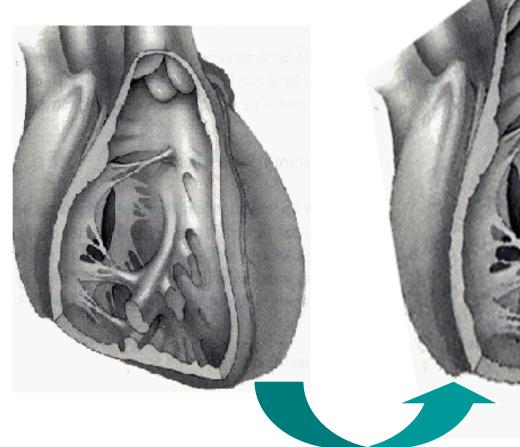
Navia et al. JTCVS 2010;139

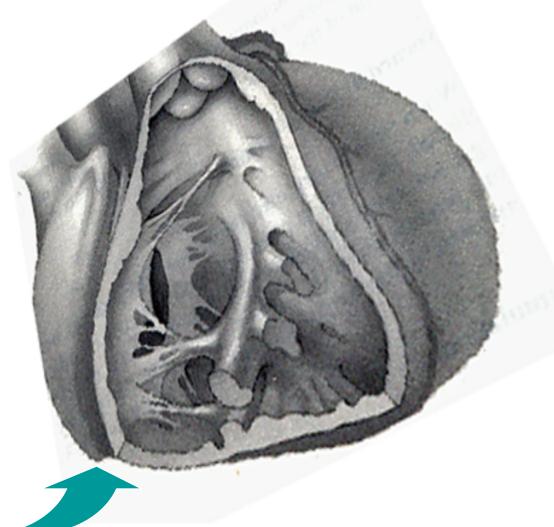
The presence of **significant TR** after MV surgery is strictly related to **late mortality !**

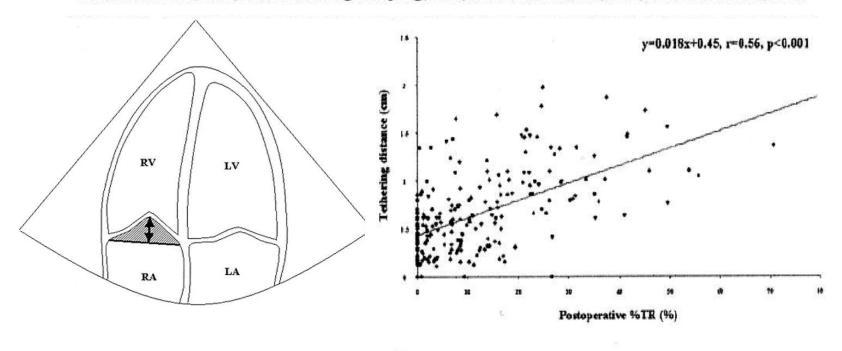
Tricuspid Valve Repair With an Annuloplasty Ring Results in Improved Long-Term Outcomes

To improve the results, the surgical treatment of TR has to be **tailored** to the stage of the disease

TR due to annular dilatation alone

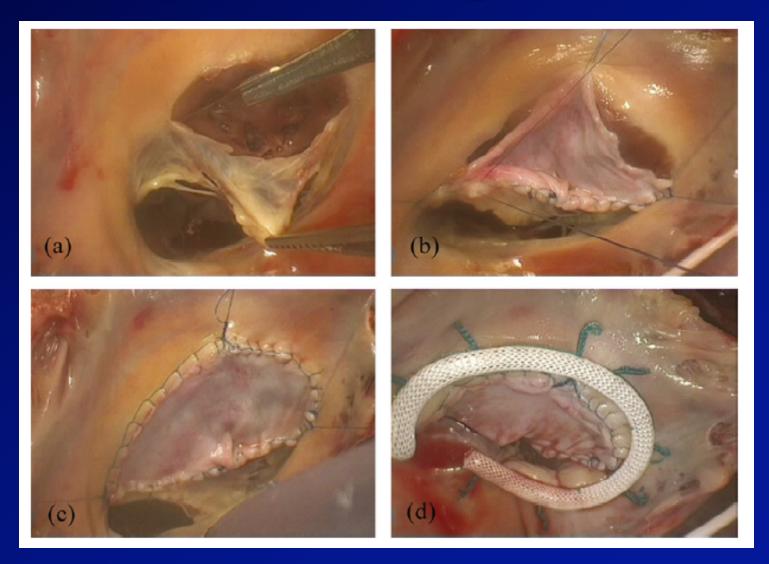

remodeling annuloplasty with a semirigid ring is associated with the most durable results




Functional TR Increased leaflet tethering

Tricuspid Valve Tethering Predicts Residual Tricuspid Regurgitation After Tricuspid Annuloplasty

Shota Fukuda, MD; Jong-Min Song, MD; A. Marc Gillinov, MD; Patrick M. McCarthy, MD; Masao Daimon, MD; Vorachai Kongsaerepong, MD; James D. Thomas, MD; Takahiro Shiota, MD



Conclusion:

patients with extensive leaflet tethering (>1.0 cm) require additional maneuvers to ensure valve competence. (J Am Soc Echocardiogr 2007;20: 1236-1242.)

Tricuspid leaflet augmentation

Dreyfus GD et al. Eur J Cardiothor Surg 2008;34:908-10

Tricuspid regurgitation: most common surgical scenarios

Functional TR in patients undergoing left-

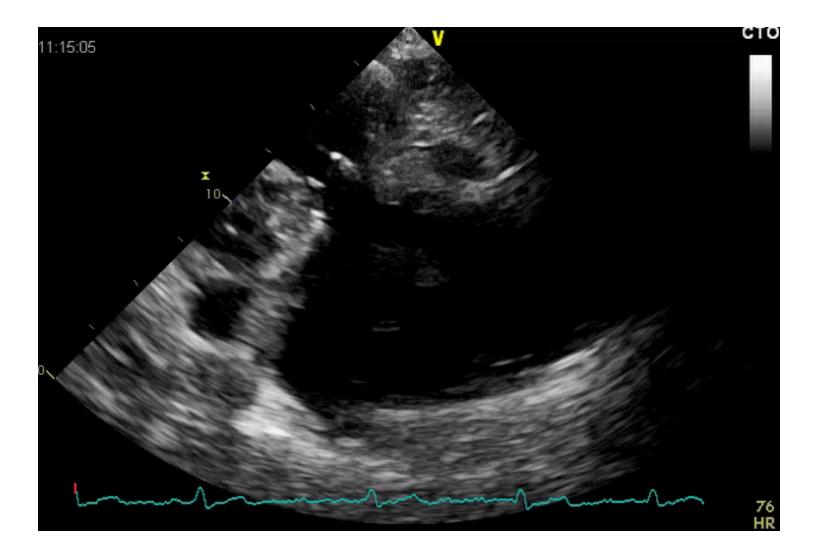
sided valve surgery

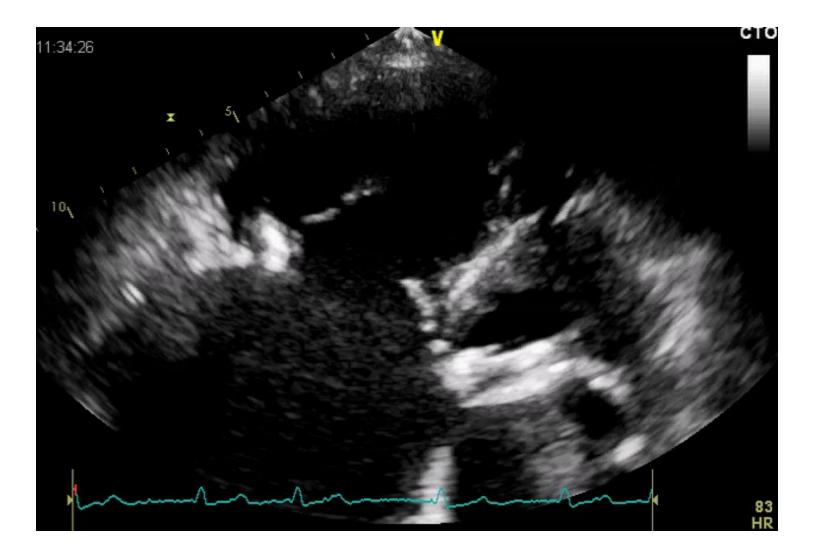
Late TR following left sided valve surgery

ECOCARDIOGRAPHY

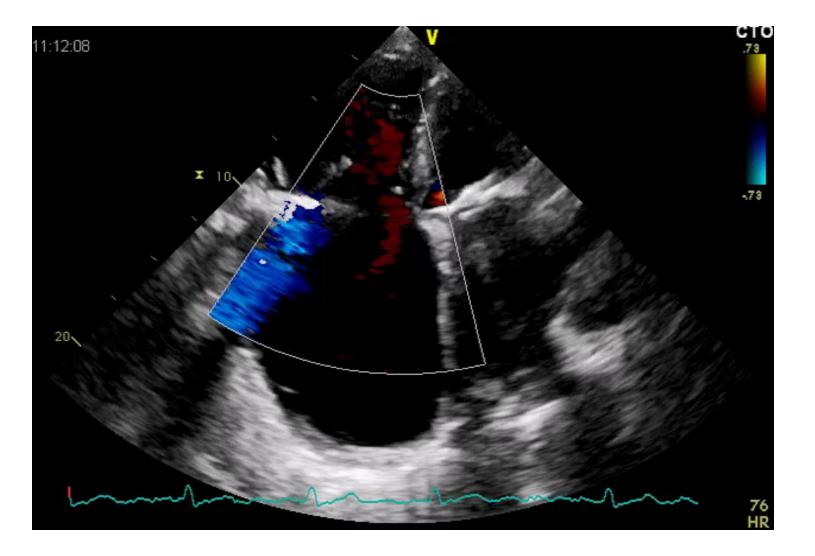
• Severe TR severa (VC 11 mm)

- Tricuspid annulus: 46 mm
- Tethering of the leaflets + fibrosis
 - Tenting area: 2.9 cm2
 - Coaptation distance: 1.37 mm
- RV dilatation (EDD 57 mm)
- RV dysfunction
 - TAPSE 13 mm
 - Tricuspid annulus systolic velocity (S-TDI): 8 cm/sec
- SPAP 50 mmHg
- Extreme right atrial enlargement (550 ml)
- FE 55%
- Well functioning mitral prostesis (mean gradient 6 mmHg)





ECOCARDIOGRAPHY



ECOCARDIOGRAPHY

ECOCARDIOGRAPHY

2012 ESC Indications for surgery in tricuspid disease

	Class	Level
Surgery is indicated in symptomatic patients with severe TS.	Ι	С
Surgery is indicated in patients with severe TS undergoing left-sided valve intervention.	Ι	С
Surgery is indicated in patients with severe primary, or secondary, TR undergoing left-sided valve surgery.	Ι	С
Surgery is indicated in symptomatic patients with severe isolated primary TR without severe right ventricular dysfunction.	Ι	С
Surgery should be considered in patients with moderate primary TR undergoing left-sided valve surgery.	IIa	С
Surgery should be considered in patients with mild or moderate secondary TR with dilated annulus (\geq 40 mm or > 21 mm/m ²) undergoing left-sided valve surgery.	IIa	С
Surgery should be considered in asymptomatic or mildly symptomatic patients with severe isolated primary TR and progressive right ventricular dilation or deterioration of right ventricular function.	IIa	С
After left-sided valve surgery, surgery should be considered in patients with severe TR who are symptomatic or have progressive right ventricular dilatation/dysfunction , in the absence of left-sided valve dysfunction, severe right or left ventricular dysfunction, and severe pulmonary vascular disease.	IIa	С

Surgical Beating Heart TV «implantation»

- Median sternotomy/Right thoracotomy
- Beating heart (No cross clamp and cardioplegic arrest)
- No tissue dissection (minimal postoperative bleeding in redos)
 - Peripheral cannulation
 - Exposure limited to the right atrium
 - No SVC/IVC snaring (vacuum assisted venous drainage)
- Complete preservation of the tricuspid valve apparatus

(RV function preserved)

- Short CPB time
 - Bioprosthesis implantation with a continuous suture

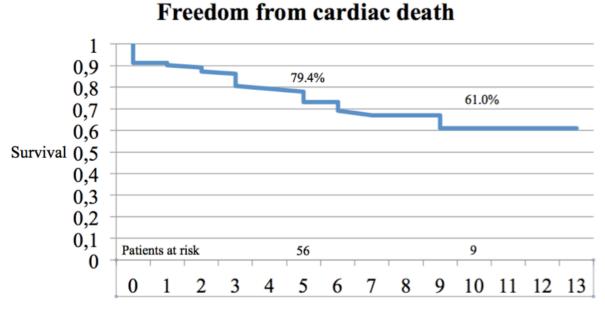
Late TR after MV surgery - San Raffaele series

Table 1. Major basenne ennear enaracteristics.				
	All patients (n=117)	I-TVR (n=61)		
Age mean, years	63.7±9.8	61.7±10.7		
Male gender	29 (24.8%)	17 (27.9%)		
Previous cardiac surgery >1	34 (29.1%)	17 (27.9%)		
Logistic EUROScore	11.8 (8.4-17.8)	12.0 (6.1-17.4)		
Atrial Fibrillation	100 (85.5%)	54 (88.5%)		
Permanent PM/ICD	33 (28%)	20 (32.8%)		
Coronary artery disease	17 (14.5%)	10 (16.4%)		
CKD	25 (21.4%)	12 (19.7%)		
Diabetes mellitus	18 (15.4%)	9 (14.7%)		
NYHA class III-IV	93 (79.5%)	48 (78.7%)		
Ascites	41 (35.0%)	24 (39.3%)		
LVEF, %	54.6±8.8	54.4±8.3		
RV dysfunction				
mild	26 (22.2%)	13 (21.3%)		
moderate	24 (20.5%)	12 (19.7%)		
severe	4 (3.4%)	0 (0%)		
sPAP, mmHg	48.4±14.1	45.3±8.9		

Table 1. Major baseline clinical characteristics.

Buzzatti N et al. Long-term outcomes of tricuspid valve replacement after previous left-side heart surgery. Eur J Cardiothorac Surg. 2014 Oct;46(4):713-9.

30-day results


Acute 30-day post-operative outcomes.

All patients (n=117)	I-TVR (n=61)
11.5 (7-17)	11 (6.5-16)
16 (13.7%)	9 (14.7%)
41 (35.0%)	18 (29.5%)
17 (14.5%)	9 (14.7%)
5 (4.3%)	3 (4.9%)
4 (3.4%)	2 (3.3%)
1 (0.9%)	1 (1.6%)
54 (46.1%)	25 (40.9%)
7 (6.0%)	5 (8.2%)
	$ \begin{array}{c} 11.5 (7-17) \\ 16 (13.7\%) \\ 41 (35.0\%) \\ 17 (14.5\%) \\ 5 (4.3\%) \\ 4 (3.4\%) \\ 1 (0.9\%) \\ 54 (46.1\%) \end{array} $

Preoperative predictors of 30-day mortality.

^	Alive $(n-110)$	Dead $(n-7)$	2	OP (05% CI)	ROC	NPV	PPV	Song	Space
	Alive (n=110)	Dead (n=7)	p	OR (95% CI)		INF V	L L A	Sens	Spec
			value		cut-				
					off				
					value				
Age, years	62.8±9.7	58.4±10.9	0.25	0.96 (0.89-1.03)	-	-	-	-	-
LES	11.6 (8.1-16.0)	38.7 (13.3-45.9)	0.002*	1.16 (1.06-1.27)	18.1	98.5	19.0	80.0	79.0
Ascites	35 (31.9%)	6 (85.7%)	0.004*	12.86 (1.49-110.89)	-	98.7	14.6	85.7	68.2
REDO>1	30 (27.3%)	4 (57.1%)	0.09	3.56 (0.75-16.83)	-	-	-	-	-
I-TVR	56 (50.9%)	5 (71.4%)	0.29	2.41 (0.45-12.96)	-	-	-	-	-
LVEF, %	54.9±8.5	46.2±11.8	0.07	0.92 (0.84-1.01)	-	-	-	-	-
RV dysfunction	24 (21.8%)	4 (57.1%)	0.03*	4.78 (1.00-22.82)	-	96.6	14.3	57.1	78.2
≥moderate									
sPAP, mmHg	47.5±12.9	63.7±24.9	0.04*	1.05 (1.00-1.11)	57.5	96.6	18.2	50.0	86.4

Late results - cardiac death

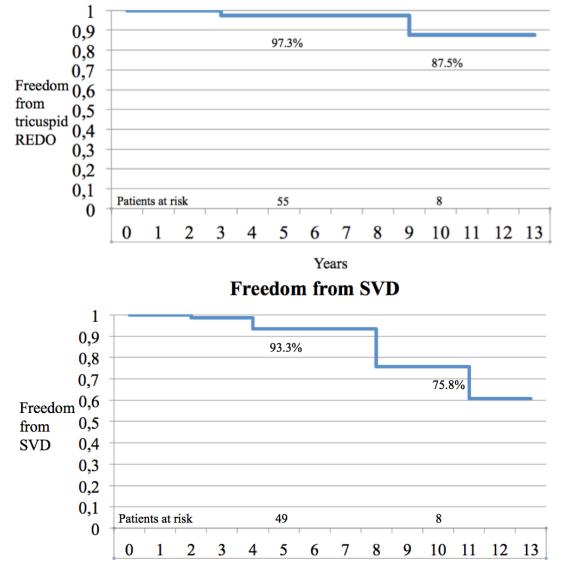
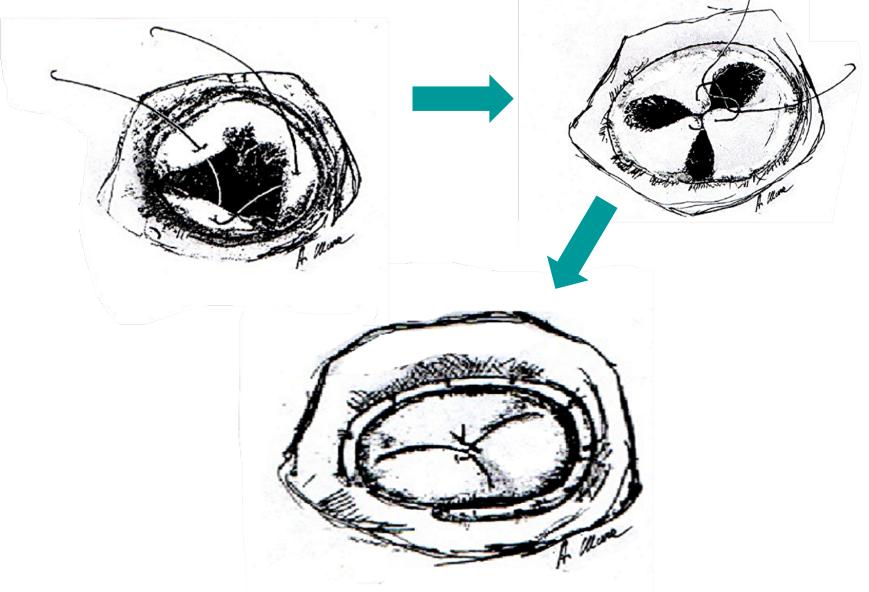

Years

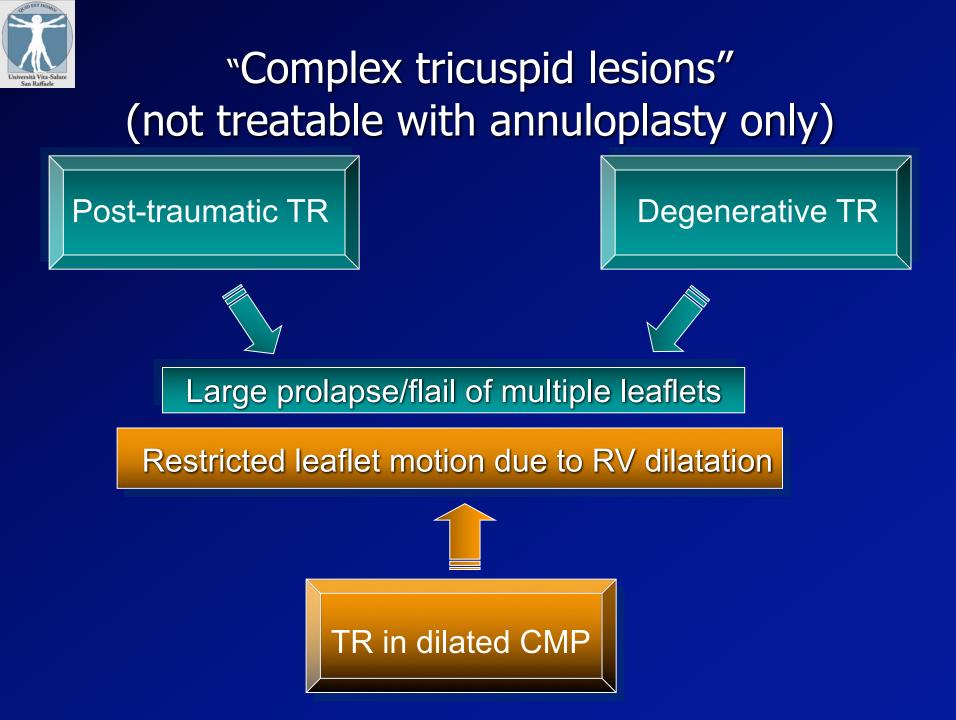
Table 5. Preoperative predictors of late cardiac mortality.

		•		
	Not cardiac death (n=86)	Cardiac death (n=22)	p value	HR (95% CI)
Age, years	62.7±10.0	62.9±8.8	0.51	1.02 (0.97-1.10)
LES	11.3 (7.2-15.4)	14.3 (9.7-22-6)	0.14	1.05 (0.98-1.13)
Ascites	28 (32.6%)	6 (27.3%)	0.77	1.15 (0.45-2.95)
REDO >1	21 (24.4%)	9 (40.9%)	0.14	1.93 (0.81-4.59)
I-TVR	42 (48.8%)	12 (54.5%)	0.48	1.35 (0.58-3.14)
LVEF, %	55.0±8.8	54.8±7.3	0.91	1.00 (0.94-1.06)
RV dysfunction \geq moderate	17 (19.8%)	7 (31.8%)	0.27	1.67 (0.67-4.14)
sPAP, mmHg	46.0±11.3	58.1±19.4	0.05*	1.04 (1.00-1.08)
		-		

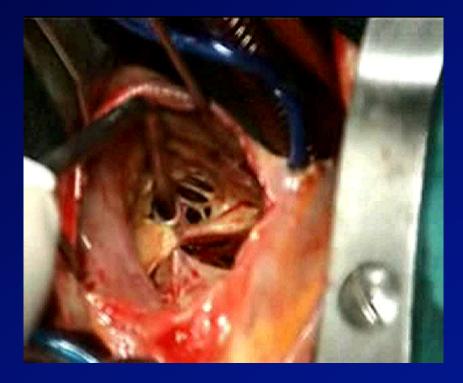
Late results

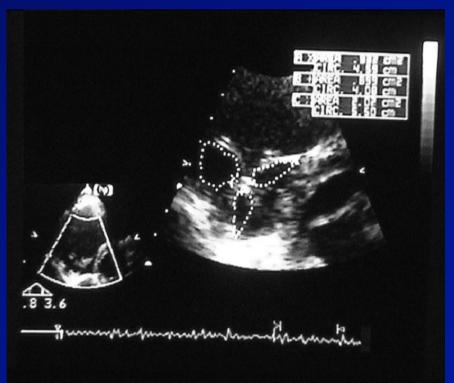
Freedom from tricuspid reoperation

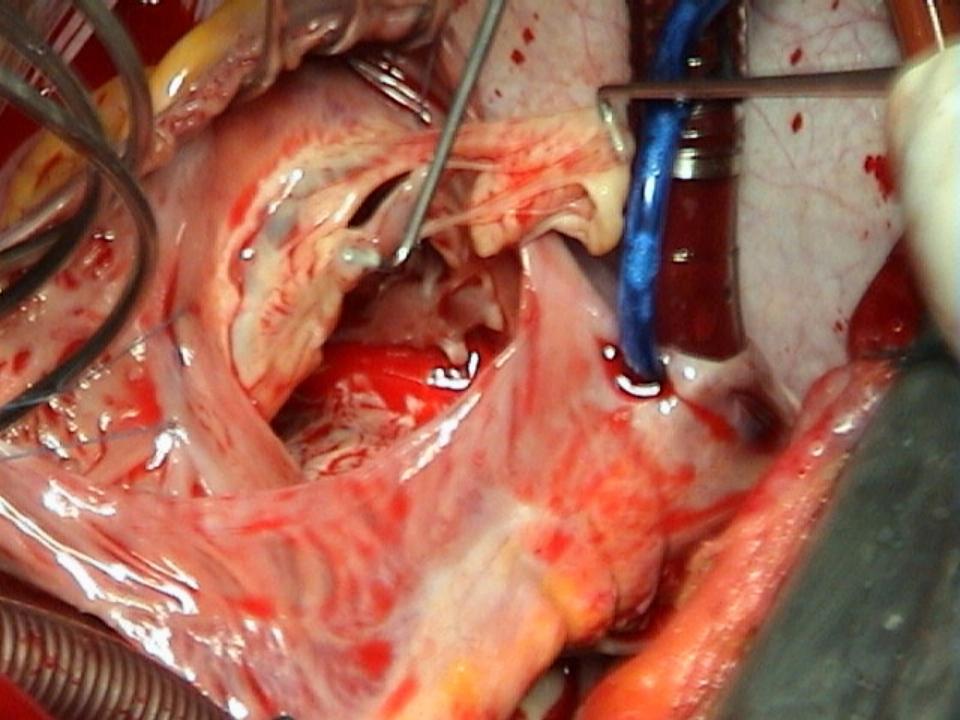


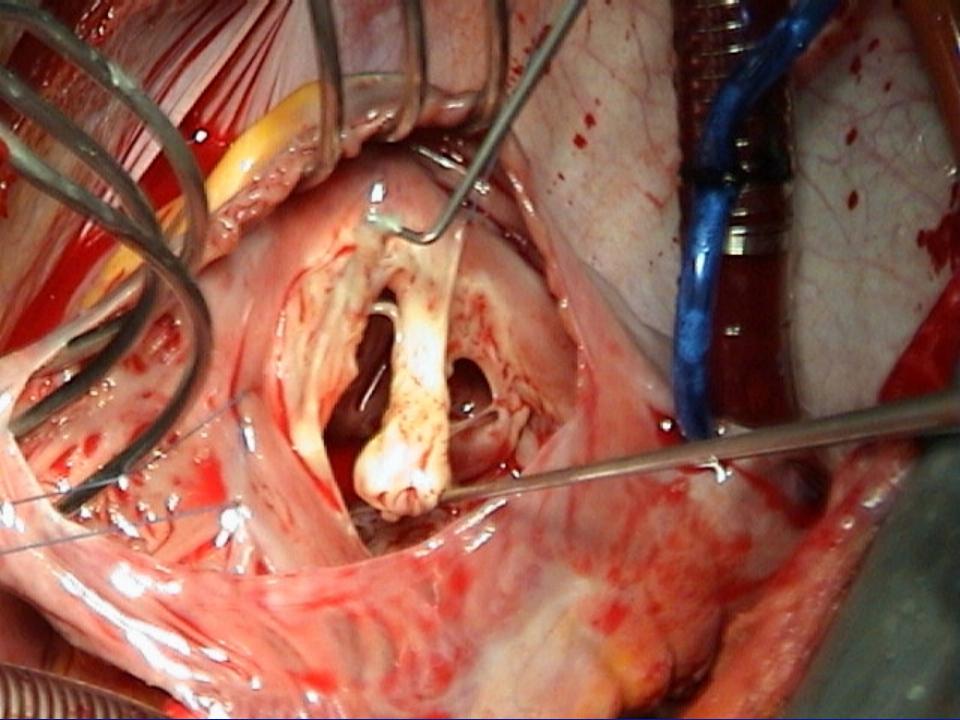

Years

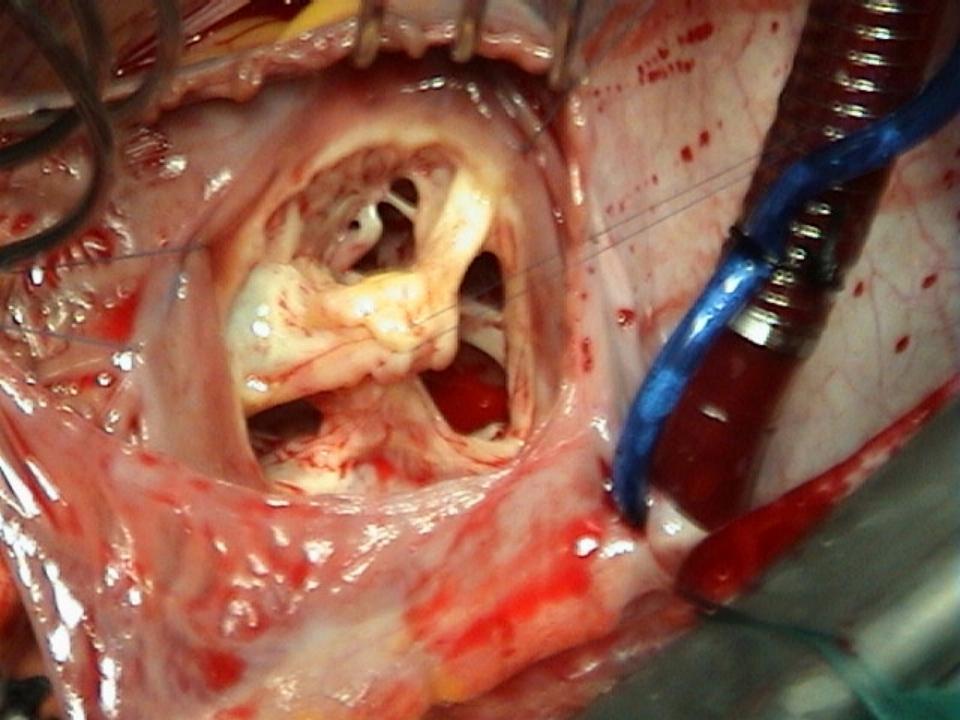
Dept. of Cardiac Surgery, S. Raffaele University Hospital, Milan, Italy

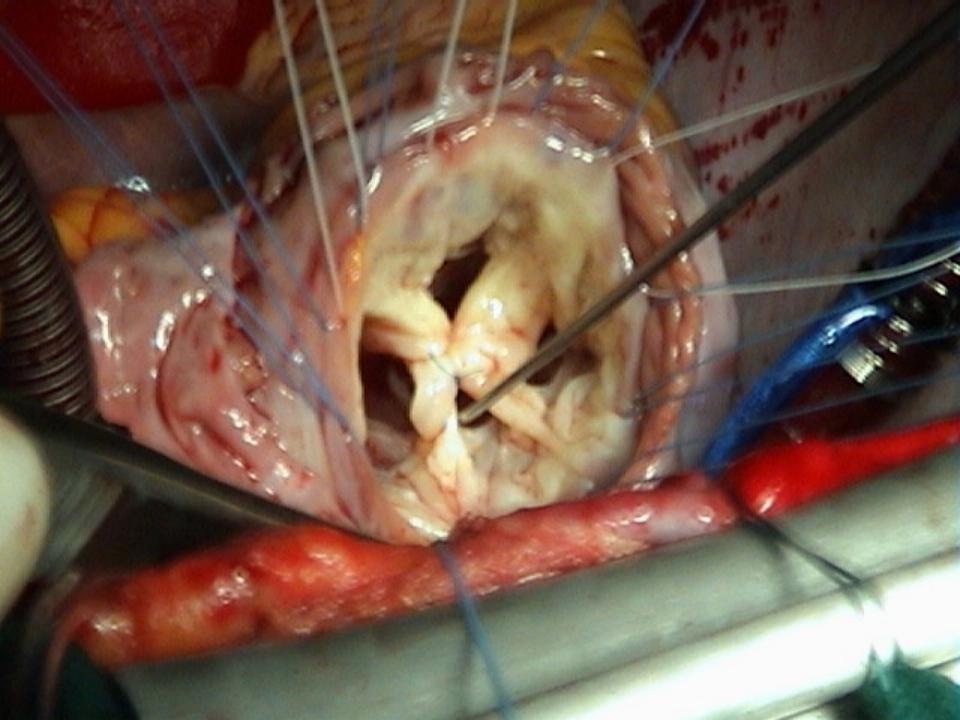

Clover technique

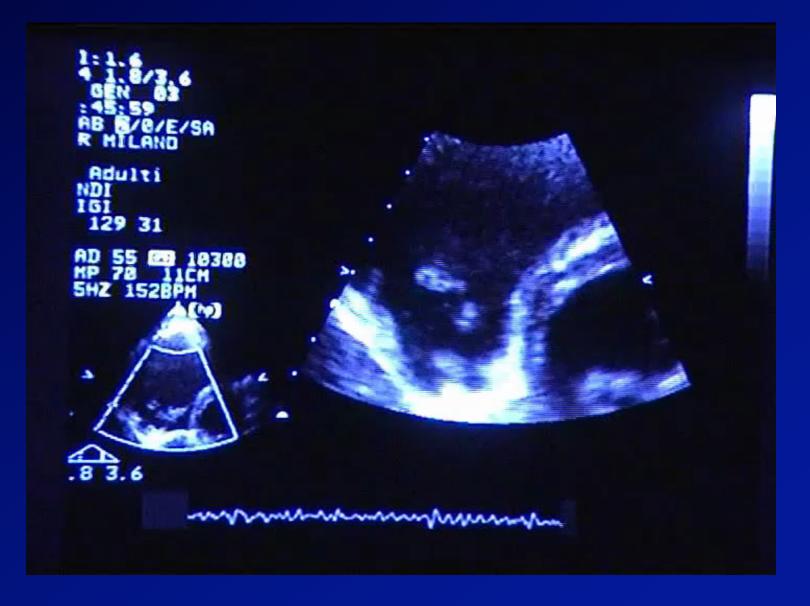







Surgical and TEE view





Results

Hospital mortality Follow-up (median,yrs)	7/96 (7.2%) 9 years, (IQR 5.1;10.9)
Tricuspid regurgitation	(up to 14.3 years)
- absent / mild (1+)	69/89 (77.5%)
- moderate (2+)	18/89 (20.2%)
- severe (3-4+)	2/89 (2.2%)
Reoperation	1 pt
Tricuspid gradient (mean <u>+</u> SD)	2.8 ± 1.4 mmHg
Tricuspid valve area (mean <u>+</u> SD)	4.3 ± 0.6 cm2

