

Milano 29 Marzo 2017

MitraClip : Le indicazioni emergenti nell'insufficienza mitralica secondaria. L'Everest ci aveva fornito indicazioni che appaiono già superate nella pratica clinica corrente. Una metodica nata per risolvere lesioni tipo II secondo Carpentier si sta impadronendo anche della correzione delle lesioni di tipo I, cosa fare?

Guido Gelpi, MD

Cardio-Vascular Surgery Division of "L.Sacco" Hospital, AAST Fatebenefratelli-Sacco, University of Milan, Italy

The Mechanism of MR

Carpentier A. Cardiac valve surgery-the "French correction." J Thorac Cardiovasc Surg 1983;86:323–337.

Prognostic implications and Survival in *Primary/Degenerative* Mitral Regurgitation

Association Between Early Surgical Intervention vs Watchful Waiting and Outcomes for Mitral Regurgitation Due to Flail Mitral Valve Leaflets M. Suri et al, JAMA. 2013;310(6):609-616

N = 2097 Mean LV Ejection Fraction ~ 68%

Long-term survival in asymptomatic patients with severe degenerative mitral regurgitation: a propensity score-based comparison between an early surgical strategy and a conservative treatment approach Montant et al, The Journal of Thoracic and Cardiovascular Surgery. Volume 138, Number 6

> N = 192 Mean LV Ejection Fraction ~ 70%

Prognostic implications and Survival in Secondary/Functional Mitral Regurgitation

Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure

Benjamin H Trichon, Felker, Shaw, Cabell, O'Connor, MD American Journal of cardiology 2003; Volume 91, 538–543

N = 2057 Mean LV Ejection Fraction< 40%

Prognostic implications of functional mitral regurgitation according to the severity of the underlying chronic heart failure: a long-term outcome study

Bursi F, Barbieri A, Grigioni F, et al. Eur J Heart Fail. 2010;12(4):382-388.

N = 469 Mean LV Ejection Fraction< 30%

Severe MR Leads to Increased Hospital Admissions

Significantly higher hospital admissions experienced by patients with moderate to severe MR¹

Prevalence of Mitral Regurgitation

Moderate or severe MR is estimated to be present in 1.7% of the adult population The prevalence rises strikingly with advancing age (> 9% for \geq 75y.o. subjects, p<.0001)

^{1.} Nkomo et al. Burden of valvular heart diseases: a population-based study. Lancet 2006 Sep 16;368(9540):1005-11.

Trend of Aging Population

The «unmet need»

- Between January 1995 and December 2010, a total of 1441 patients was analyzed with a baseline characteristics of moderate/severe MR and severe LV dysfunction
- Medical therapy was the dominant treatment strategy pursued in 1094 patients (75%);

The medically managed cohort had **lower EF and larger LV diastolic dimensions** than patients in other treatment groups;

Management and outcomes in patients with moderate or severe functional mitral regurgitation and severe left ventricular dysfunction

Zainab Samad¹*, Linda K. Shaw², Matthew Phelan², Mads Ersboll³, Niels Risum³, Hussein R. Al-Khalidi², Donald D. Glower⁴, Carmelo A. Milano⁴, John H. Alexander^{1,2}, Christopher M. O'Connor^{1,2}, Andrew Wang¹, and Eric J. Velazquez^{1,2}

¹Department of Medicine, Division of Cardiology, Duke Medicine, Durham, NC, USA; ²Duke Clinical Research Institute, Duke Medici of Copenhagen, Copenhagen, Denmark, and ⁴Department of Surgery, Duke Medicine, Durham, NC, USA

The «unmet need»

- 2000-2008: identificati 5.737
 con MR ≥ 3
- 1095 pz. con IM severa ed HF (814 FMR, 226 DMR)

518 operati (~47,3%) 577 non operati (~52%)

577 pz NON operati (~52%), Follow-Up a 5 anni:
 - mortalità → 50%

- ospedalizzazioni \rightarrow 90%

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation Published by Elsevier Inc.

ORRESPONDENC)E
Research Correspondence	Prevalence and Outcomes of Unoperated Patients With Severe Symptomatic Mitral Regurgitation
	and Heart Failure Comprehensive Analysis to Determine the Potential Role of MitraClip for This Unmet Need

Main Factors prohibiting Surgery:

- Impaired LVEF (<30%)
- Multiple comorbidities
- Advanced age

Vol. 63, No. 2, 2014

ISSN 0735-1097/\$36.00

MitraClip Therapy Filling a Treatment Gap

- Medical therapy is limited to symptom management
- MV surgery has been the only option that reliably reduces MR
- A significant gap exists between patients who receive medical and surgical options, based on risk-benefit profile
- MitraClip therapy is a first-in-class, minimally invasive catheter-based technology option to reduce MR

The MitraClip therapy: Rationale for intervention

To reduce symptoms by reducing LA pressure under resting conditions To prevent acute HF by reducing the chance of flash pulmonary edema

To improve compliance to therapy by increasing cardiac output To initiate reverse remodeling by reducing volume overload

Concept: Percutaneous Mitral Valve Repair

- Double-orifice suture technique developed by Prof. Ottavio Alfieri
- First published results in 1998 illustrated proven benefit
- Suggested procedure best suited for minimally invasive approach

The MitraClip System performs **percutaneous mitral valve repair** by creating a vertical line of coaptation, forming a double–orifice valve.

Beating heart procedure – no cardiopulmonary bypass

Allows for real-time positioning and repositioning to optimize MR reduction

RCT vs Surgery

EVEREST II Randomized Controlled Trial (Endovascular Valve Edge-to-Edge REpair Study)

The EVEREST II RCT was a prospective, multi-center trial designed to compare the safety and effectiveness of the MitraClip System with mitral valve surgery in the treatment of patients with significant (\geq 3+) mitral regurgitation

The NEW ENGLAND JOURNAL of MEDICINE

Percutaneous Repair or Surgerv for Mitral Regurgitation

Ted Feldman, M.D., Elyse Foster, M.D., Donald G. Glower, M.D., Saibal Kar, M.D., Michael J. Rinaldi, M.D., Peter S. Fail, M.D., Richard W. Smalling, M.D., Ph.D., Robert Siegel, M.D., Geoffrey A. Rose, M.D., Eric Engeron, M.D., Catalin Loghin, M.D., Alfredo Trento, M.D., Eric R. Skipper, M.D., Tommy Fudge, M.D.,

Long- Term MitraClip Device Safety

	Through 1 Year # (%) of patients	1 Year to 5 Years # (%) of patients
Single Leaflet Device Attachment (SLDA)	10 (6.3%)	0 (0.0%)
MV stenosis	1 (0.6%)	0 (0.0%)
Device Embolization	0 (0.0%)	0 (0.0%)
Pacad on N=1E9 who ware implanted with 1 or	2 MitraClin dovisor	

Mitral Regurgitation Grade

NYHA Funtional Class

Reduction in LV Volumes at 1 and 5 years

5-Years FU mortality in EVEREST II

Single-Arm Registries

REALISM Registry: Everest II Continued access study in the real-world

N = 374

Baseline Characteristics	All DMR (N=374)
Core Lab Assessed MR ≥3+	90%
Age (mean ± SD)	79 ±11 years
Female	55%
Coronary Artery Disease	52%
Previous CABG	25%
Atrial Fibrillation	64%
Cerebrovascular Disease	17%
Diabetes	19%
Moderate to Severe Renal Disease	17%
Chronic Obstructive Pulmonary Disease	26%
LV Ejection Fraction (mean \pm SD)	60 ± 8%
LV End Diastolic Volume (mean±SD)	$126 \pm 42 \text{ ml}$

Single-Arm Registries

REALISM Registry: Outcome

Degenerative Mitral Regurgitation

Maschio 85 anni

- •FRC: ipertensione arteriosa
- •PAT ASS: BPCO. Pregresso potus. Gastrite cronica con pregresso riscontro di ulcera peptica e angiodisplasia.
- •AN CARDIOLOGICA:
 - ●FA permanente
 - ●9/2016: ricovero per SCC con riscontro di IM severa
 - ●11/2016: ricovero per SCC e BPCO riacutizzata
 - ●12/2016: ricovero per SCC. Coronarie indenni.

Curr Cardiol Rep (2016) 18: 129 DOI 10.1007/s11886-016-0809-7

VALVULAR HEART DISEASE (A WANG, SECTION EDITOR)

Percutaneous Mitral Valve Repair with MitraClip: Patient and Valve Selection for Optimal Outcome

Devdas T. Inderbitzin¹ • Maurizio Taramasso¹ • Fabian Nietlispach² • Francesco Maisano¹

The main objective of the **EVEREST Criteria was to ensure acute efficacy**. By the time, most criteria have been surpassed, since **experienced physicians dedicated to TMVR** have found technical solutions to achieve acute successful reduction of MR

The increasing number of elderly polymorbid patients with an inacceptable risk for surgery are part of the real world and should not be neglected. With the worldwide spreading postmarket use of the MitraClip, the indications have rapidly been expanded towards FMR and inoperable patients, especially in Europe

ESC/EACTS 2012 Guidelines on the Management of valvular heart disease¹

Indicazioni per IM Degenerativa

opean Heart Journal doi:10.1093/eurhearti/ehs109

Guidelines on the management of valvular heart disease (version 2012)

The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Authors/Task Force Members: Alec Vahanian (Chairperson) (France)*, Ottavio Alfieri (Chairperson)* (Italy), Felicita Andreotti (Italy), Manuel J. Antunes (Portugal), Gonzalo Barón-Esquivias (Spain), Helmut Baumgartner (Germany), Michael Andrew Borger (Germany), Thierry P. Carrel (Switzedand), Michele De Bonis (Italy), Arturo Evangelista (Spain), Volkmar Falk (Switzerund), Bernard lung (France), Patrizio Lancellotti (Belgium), Luc Pierard (Bergium), Susanna Price (UK), Hans-Joachim Schäfers (Germany), Gerhard Schule (Germany), Janina Stepinska (Poland), Karl Swedberg (Sweden), Johanna Takkenperg (The Netherlands), Ulrich Otto Von Oppell (UK), Stephan Windector (Switzerland), Jose Luis Zamoran (Spain), Marian Zembala (Poland)

<u>" La procedura percutanea edge-to-edge può essere presa in</u> considerazione in pazienti sintomatici con severe insufficienza mitralica primaria che rispondono ai criteri di eleggibilità, sono giudicati inoperabili o ad alto rischio chirurgico da un "heart team", e hanno un'aspettativa di vita maggiore di 1 anno (classe di raccomandazione IIb, livello di evidenza C)"

Indicazioni per IM Funzionale

"La procedura percutanea MitraClip può essere presa in considerazione in pazienti sintomatici con severe insufficienza mitralica secondaria nonostante ottima terapia medica (incluso la CRT se indicato), che rispondono ai criteri di eleggibilità, sono giudicati inoperabili o ad alto rischio chirurgico da un team di cardiologi e cardiochirurghi", e hanno un'aspettativa di vita maggiore di 1 anno (classe di raccomandazione IIb, livello di evidenza C)"

Source: http://www.escardio.org/guidelines-surveys/esc-guidelines/Pages/valvular-heart-disease.aspx

Global MitraClip Experience

1. Includes clinical and commercial procedures as of 30/11/2016. Source: Data on file at Abbott Vascular

MitraClip Therapy Current Global Adoption

Source: Data on file at Abbott Vascular

MitraClip in Specific Patient Population

Patient groups in which significant clinical benefits have been reported:

- Degenerative MR, declined for surgery¹
- Severe LV dysfunction refractory to medical therapy²
- Severe Heart Failure, despite optimal medical therapy³
- CRT non-responders⁴
- Bivalvular Disease: Severe Aortic Stenosis and Mitral Regurgitation⁵

The following parameters should be taken into consideration by the Heart Team⁶:

- Moderate to severe or severe MR (Functional or Degenerative)
- Echocardiographic criteria for eligibility
- Level of surgical risk
- Greater than one year life expectancy

1. Reichenspurner, H. et al. Clinical Outcomes through 12 months in patients with Degenerative Mitral Regurgitation treated with the MitraClip device in the ACCESS-Europe Phase I trial. Eur J Cardiothoracic Surgery. 2013: 44:e 280-288. 2. Franzen O, Baldus S, Rudolph V, et al. Acute outcomes of MitraClip therapy for mitral regurgitation in high-surgical-risk patients: Emphasis on adverse valve morphology and severe left ventricular dysfunction. Eur Heart J. 2010; 31:1373-1381. 3. Franzen et al. MitraClip Therapy In Patients With End-Stage Systolic Heart Failure. Eur J Heart Failure. 2011; 13: 569-576. 4. Auricchio et al. Correction of Mitral Regurgitation in Nonresponders To Cardiac Resynchronization Therapy By MitraClip Improves Symptoms And Promotes Reverse Remodeling. JACC 2011; 58: 2183-2189. 5. Rudolph V, Schirmer J, Franzen O, Schlüter M, Seiffert M, Treede H, Reichenspurner H, Blankenberg S, Baldus S. Bivalvular transcatheter treatment of high-surgical-risk patients with coexisting severe aortic stenosis and significant mitral regurgitation. Int J Cardiol. 2013; 167(3):716-20. 6. ESC/EACTS 2012 Guidelines on the management of valvular heart disease. Eur Heart J (2012) 33, 2451–2496.

MitraClip Clinical Experience: Growing the Clinical Evidence

Cases Series

Interventional Cardiology

STRUCTURAL HEART DISEASE

Effectiveness of MitraClip Therapy in Patients with Refractory Heart Failure

MARIANNA ADAMO, M.D.,¹ MARCO BARBANTI, M.D.,² SALVATORE CURELLO, M.D.,¹ CLAUDIA FIORINA, M.D.,¹ ERMANNA CHIARI, M.D.,¹ GIULIANO CHIZZOLA, M.D.,¹ DAVIDE CAPODANNO, M.D., Ph.D.,² CORRADO TAMBURINO, M.D., Ph.D.,² MARCO METRA, M.D.,¹ and FEDERICA ETTORI, M.D.¹

From the ¹Spedali Civili, Brescia, Italy; and ²Ferrarotto Hospital, Catania, Italy

EU Registries in the Real Word: Single-Arm Registries Etiology SENTINEL **Access EU Etiology** N = 628 **Etiology** N = 487 3% 23% 23% 77% 74% FMR DMR Mixed FMR DMR **Etiology TRAMI Etiology** N = 749 24% 28% 76% 72% **Grasp-IT** N = 304 FMR DMR 32 FMR DMR

Single-Arm Registries

EU Registries in the Real Word: Outcome

SENTINEL N = 628

Adamo M, Capodanno D, et al. Am J Cardiol. 2015;115:107-12

Puls M, et al. European Heart Journal (2016) 37, 703–712

Meta-Analysis

26 studies including **3821** patient's who were treated with MC

	Numbers (n)	Weighted mean (%)
Age (years)	3821	73.9
LogEuroScore (%)	2435	25.2
STS Score (%)	899	12.4
MR>3+	3461	90.5
DMR	3515/1518	43.2
FMR	3515/1927	54.8
NYHA class 3-4	3732/3249	87.1
Procedural sucess	3292/3060	92.9

(Meta)-Analysis of Safety and Efficacy Following Edge-to-Edge Mitral Valve Repair Using the MitraClip System

DOROTHEE H.L. BAIL, M.D., PH.D.

From the Competence-Center Quality Assurance, Medical Service of Statutory Healthcare Insurance, Tuebingen and Stuttgart, Germany

	30-day outcome			6-month outcome			12-month outcome		
	Numbers (n)	Weighted mean (%)	95% CI	Numbers (n)	Weighted mean (%)	95% CI	Numbers (n)	Weighted mean (%)	95% CI
MR<2+	2862/2473	86.4	85.1; 87.6	575 (717)	80.2	77.1; 83.1	676 (839)	80.6	77.7; 83.0
Death (Survival)	3586/102	2.8 (97.2)	2.3; 3.4	129 (1061)	11.9 (88.0)	10.2; 14.3	245 (1405)	17.4 (82.6)	15.1; 19.9
NYHA class 1-2	350/232	66.3	61.1; 71.2	703 (894)	78.6	75.8; 81.3	605 (915)	66.1	62.9; 69.2
MAE all (death excluded)	3551/649	18.3	17.0; 19.6	61 (316)	18.9	15.1; 24.1			
oMVS	3206/112	3.5	2.9; 4.2	27 (607)	4.5	2.9; 6.4	124 (1084)	11.4	9.6; 13.5

"..MC is associated with good short-term success and low mortality. MC is safe and effective for patients with limited surgical options. The results are comparable with open mitral valve repair (oMVR) but patients are markedly older and have a higer risk profile.."

CARDIOLOGY

Functional Mitral Regurgitation

Maschio 81 aa

FRC: ipertensione, dislipidemia, DM, ex fumo

PAT ASS: correzione ernia lombare, colecistectomia, BPCO,

retinopatia diabetica, IRC IV stadio

AN CARDIO

Arteriopatia periferica con ulcere

Pregresso ictus

CAD con acinesia SIV inferiore e parte inferoposterolaterale \rightarrow IM da tethering del LPM. FE 30%. Territorio non vitale all'RM \rightarrow tp medica

FMR treated₃₇

Future of MitraClip Procedure ????

RCT vs OMT

The new Paradigm: Ongoing trials of MitraClip vs OMT

	COAPT	MITRA.FR	RESHAPE-HF-2
Etiology	FMR	FMR (not operable)	FMR
FMR grade	FMR≥3+	FMR>2	FMR≥3+
Number of patients	430	288	380
Randomization	1 to 1	1 to 1	1 to 1
Sites	83	30	40
Countries	US & Canada	France	Europe
NYHA class	<u>></u>	<u>></u>	<u>></u>
Primary efficacy endpoint	Recurrent heart failure hospitalizations	All-cause mortality and unplanned hospitalizations for heart failure	Cardiovascular mortality and unplanned hospitalizations for heart failure

Trials Design

RESHAPE-HF 2 Trial (EU)

COAPT TRIAL (USA)

... Waiting for RCTs study vs OMT

... In the meanwhile What have we learned?

Case-Control Study

Comparison of Percutaneous Mitral Valve Repair Versus Conservative Treatment in Severe

Functional Mitral Regurgitation

Curr Cardiol Rep (2016) 18: 129 DOI 10.1007/s11886-016-0809-7

VALVULAR HEART DISEASE (A WANG, SECTION EDITOR)

Percutaneous Mitral Valve Repair with MitraClip: Patient and Valve Selection for Optimal Outcome

Devdas T. Inderbitzin¹ • Maurizio Taramasso¹ • Fabian Nietlispach² • Francesco Maisano¹

Patients needing mitral repair with a low acceptable risk for surgery and a complex anatomy for MitraClip, should preferably undergo conventional surgery. **Patients with an unacceptably high risk for surgery might be subjected to a MitraClip therapy.**

A favorable anatomy for MitraClip requires targeting a curative treatment (reduction of MR to less than grade 2+ and no residual lesions at risk for progression)

While in the case of an extreme and complex anatomy, a palliative approach could be acceptable

The anatomical boarders are constantly surpassed by a growing expertise in many of specialized high-volume centers and the evolving quality of intra-procedural imaging.

But where are the limits to predict an unfavorable outcome? Recent studies identified a number of **clinical predictors for an adverse clinical and survival outcome**

Identification of clinical restrictions on the other hand indicates the **need for a timely intervention at an early stage** before deterioration of the myocardial disease

Case-Control Studies

Predictors of Poor Prognostic Implication

Catheterization and Cardiovascular Interventions 00:00-00 (2015)

Original Studies

Long-Term Survival and Preprocedural Predictors of Mortality in High Surgical Risk Patients Undergoing Percutaneous Mitral Valve Repair

Andreas S. Triantafyllis, wo, Puo, Friso Kortlandt, wo, Annelies L.M. Bakker, wo, Martin J. Swaans, wo, Frank D. Eefting, wo, Jan A.S. van der Heyden, 'wo, no, Martijn C. Post, wo, no, and Benno W.J.M. Pensing, wo, no

TABLE VIL Preprocedural Predictors of Long-Term Cardiac Mortality in Multivariate Analysis

	Cardia	c death			
	Yes	No	HR	CI 95%	Р
Number	29	107			
Age (yrs)	77.2 ± 7.0	73.7 ± 9.9	1.07	1.02-1.13	0.011
NYHA	3.4 ± 0.6	3.0 ± 0.6	2.07	1.02-4.20	0.045
Log-NTproBNP	8.3 ± 1.2	7.7 ± 1.2	1.52	1.07-2.15	0.018

CI: confidence interval; HR: hazards ratio; log-NTproBNP: log-N-terminal-pro-brain-natriuretic-peptide; NYHA: New York Heart Association. Bold P values imply statistical significance.

Economic Sector of Them. Nature (2013) 10-101 4010/2010/2010/2011

Patient selection criteria and midterm clinical outcome for MitraClip therapy in patients with severe mitral regurgitation and severe congestive heart failure

Hichael Neuro¹⁷, Thomas Schau², Haren Schoepp, Hartin Selfert, Frank Holachermann, Järgen Heyhöfer, and Christian Butter Table 4 Predictors of the combined event (primary endpoint: combination of all-cause mortality, left ventricular assist device implantation, mitral valve surgery, unsuccessful implantation) in univariate and multivariate analysis (Cox model)

Parameter	Univariate analysis		Multivariate analysis: model	optimized
	HR (95% CI)	P-value	HR (95% CI)	<i>P</i> -value
NT-proBNP >10 000 pg/mL	4.6 (2.6-8.2)	<0.001	3.5 (1.9-6.7)	< 0.001
Age >80 years	1.8 (1.0-3.3)	0.046	2.2 (1.2-4.2)	0.008
Serum creatinine >150 mmo/L	2.4 (1.4-4.3)	0.002		
NYHA class IV	2.1(1.2-3.7)	0.008	1.7(1.0-3.2)	0.049
TAPSE <15 mm	3.2 (1.8-5.6)	< 0.001	1.9(1.0-3.6)	0.038
TR grade >2+	2.0 (1.0-4.0)	0.052		

Cl, confidence interval; HR, hazard ratio; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation.

WHEN refer to PMVR: Timing is crucial

Piotr Ponikowski, MD, PhD, FESC

Medical University, Centre for Heart Disease Clinical Military Hospita HFA Athens 2014

Thank you for your attention !

Single-Arm Registries

Predictors of Poor Prognostic Implication

European Heart Journal (2016) **37**, 703–712 doi:10.1093/eurheartj/ehv627 CLINICAL RESEARCH Valvular heart disease

One-year outcomes and predictors of mortality after MitraClip therapy in contemporary clinical practice: results from the German transcatheter mitral valve interventions registry

Miriam Puls^{1*}, Edith Lubos², Peter Boekstegers³, Ralph Stephan von E Taoufik Ouarrak⁵, Christian Butter⁶, Christine S. Zuern⁷, Raffi Bekere Horst Sievert⁹, Georg Nickenig¹⁰, Holger Eggebrecht¹¹, Jochen Senge and Wolfgang Schillinger^{1,12†}

¹Herzzentrum, Georg-August-Universität Göttingen, Göttingen, Germany, ²Universitäres Herzzentrum Eppendorf Hamburg, Hamburg, Germany, ³Klin Angiologie), Siegburg, Germany, ⁴Universitätsmedizin Mainz, 2. Med. Klinik, Mairz, Germany, ⁵Stifturg Institut für Herzinfarktforschung, Ludwigshafer Brandenburg, Bernau, Germany, ²Universitätsklinikum Tübingen, Tübingen, Tübingen, ⁶Universitätsklinikum Heidelberg, Heidelberg, Germany, ⁹Card Frankfurt st. Katharinen, Frankfurt am Main, Germany, ¹⁰Universitätsklinikum Bonn (Med. Klinik und Poliklinik II), Bonn, Germany, ¹¹Cardioangologisd Frankfurt am Main, Germany, ³¹Cardioangologisd

Received 12 May 2015; revised 28 September 2015; accepted 28 October 2015; online publish-ahead-of-print 27 November 2015

Miriam Puls¹*, Edith Lubos², Peter Boekstegers³, Ralph Stephan von E Taoufik Quarrak⁵, Christian Butter⁶, Christine S. Zuern⁷, Raffi Bekere transcatheter mitral valve interventions registry cohort

	Multivariable analysis (Cox regression model)		
	HR (95% CI)	Р	
Age >75 years	1.29 (0.90-1.87)	0.16	
Female gender	1.13 (0.78-1.64)	0.53	
NYHA IV	1.62 (1.10-2.40)	0.02	
Anaemia	2.44 (1.16-5.12)	0.02	
Previous aortic valve intervention	2.12(1.32-3.41)	0.002	
Creatinine \geq 1.5 mg/dL	1.77 (1.24-2.54)	0.002	
Peripheral artery disease	2.12 (1.41-3.20)	0.0003	
LVEF < 30%	1.58 (1.10-2.31)	0.01	
Severe tricuspid regurgitation	1.84 (1.23-2.77)	0.003	
Procedural failure ^a	4.36 (2.37-8.02)	< 0.0001	

^aOperator-reported failure, conversion to surgery, abortion of procedure or severe residual mitral regurgitation.

Case-Control Study

The Impact of growing experience

Catheterization and Cardiovascular Interventions 00:00-00 (2016)

Influence of Experience on Procedure Steps, Safety, and Functional Results in Edge to Edge Mitral Valve Repair—A Single Center Study

Karsten Hamm,^{1*} MD, Michael Zacher,² MD, Ms, Martina Hautmann,¹ MD, Frank Gietzen.¹ MD. Philipp Halbfass.¹ MD. Sebastian Kerber.¹ MD. Anno Diegeler.² MD. Bernhard Schieffer.

Between 2011 and 2016, 126 consecutive patients were were treated and grouped in 42 consecutive patients each for further analysis in three groups

Bernhard Sch	nieffer, ³ мр, and and Sebastian Barth, ¹ мр			Group I $(n = 42)$	Group II $(n = 42)$	Group III $(n = 42)$
	n.s.		Male sex (n) Age (years)	33 73.6±8.7	$30 \\ 74.9 \pm 8.2 \\ 28 \\ 28 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$	26 75.7±9.1
	0.007		$\mathbf{BMI} (ka/m^2)$	38 27.0 ± 4.7	38 27.0 \pm 5.1	$\frac{3}{252\pm52}$
20 69/	β=0.007		Diabetes (n)	27.0±4.7 14	27.0±5.1 14	25.2 ± 5.2 17
20.070			Hypertension (n)	34	31	35
			AF(n)	34	29	19
	21.4 %		Ischemic CMP (n)	25	26	24
			Dilative CMP (n)	17	14	16
			EF< 30% (n)	21	22	21
			Frailty (n)	17	13	8
		2.4 %	ICD/bivent. ICD (n)	13/9	8/10	7/3
	-		GFR (ml/min)	40.9 ± 18.4	51.0 ± 21.4	49.9 ± 23.7
			Prior heart surgery (n)	13	8	12
group I	group II	group III	Prior stroke (n)	3	3	4
Frequency of	combined safety end	points of mitral	Euro Score log.	38.0 ± 21.2	32 ± 16.9	37.8 ± 18.7
clip-related su	urgery, necessity of AS	SD closure and	Euro Score add.	12.3 ± 3.2	12.0 ± 3.2	12.6 ± 2.9
ral failure in gro	oups I–III.		Gr	oup II	Grou	p III
Procedure inte	rval (days)	13.6 ± 14	.7 15.2	2 ± 12.5	11.5 ±	12.1
Total procedur	re time (min)	221 ± 72	167	1 ± 74	$144 \pm$	68
Time to transseptal puncture (min) 22 ± 1		22 ± 15	13	3 ± 10	13 ±	: 13
Time needed for clip 1 (min) 106 ± 49		64	1 ± 30	50 ±	: 21	
Time needed f	for clip 2 (min)	69 ± 27	42	2 ± 15	33 ±	: 11
Device time (r	nin)	116 ± 57	71	± 41	48 ±	: 30
Fluoroscopy ti	me (min)	17.5 ± 8.5	15.5 ± 8.2		11.1 ±	8.1

Fig. 2. Frequency of com valve or clip-related surge procedural failure in groups

Case-Control Study

Survival of Transcatheter Mitral Valve Repair Compared With Surgical and Conservative Treatment in High-Surgical-Risk Patients

Martin J. Swaans, MD,* Annelies L. M. Bakker, MD,* Arash Alipour, MD, PhD,* Martijn C. Post, MD, PhD,* Johannes C. Kelder, MD, PhD,* Thom L. de Kroon MD + Frank D. Eefting MD * Benno I. W. M. Bensing MD. PhD *

2014

OBJECTIVES The goal of this	study was to co	npare survival	between transcatheter n	nitral valve (MV) repair usi	ing	Charact	eristic	MitraClip	High-Risk Surgery	Conservative Treatment
MitraClip system (Abbott Vascul	lar, Santa Clara, C	alifornia), MV-	surgery, and conservative	e treatment in high-surgica	<mark>al-ri</mark> sk	No.		139	53	59
patients symptomatic with seve	ere mitral valve re	gurgitation (N	/IR).			Age, yrs		74.6 ± 9.4	70.2 ± 9.5	71.7 ± 9.6
						Male, %		94 (67.6)	27 (50.9)	32 (54.2)
BACKGROUND Up to 50% of	e		1 1 1 C		10	-			$\textbf{26.7} \pm \textbf{5.3}$	$\textbf{26.5} \pm \textbf{4.5}$
risk. Transcatheter MV repair r	100 %	N							$\textbf{43.9} \pm \textbf{14.4}$	$\textbf{34.5} \pm \textbf{16.5}$
		- Ca	_						14.2 ± 8.9	18.7 ± 13.2
METHODS Consecutive patier		1	- Maria							
(n = 53) and conservatively (n	75.0/		\	3					28 (52.8)	25 (42.4)
logistic European System for C	15 %		<u>`</u>						10 (18.9)	17 (28.8)
as judged by the beart team	ility		<u>کر</u>						27 (50.9)	24 (40.7)
as judged by the heart team.	bab		لاسر					-	15 (28.3)	19 (32.2)
DECLUTE The log EuroSCODE	a 50 %	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					28 (52.8)	45 (76.3)
	ival			~_	۲				13 (24.5)	25 (42.4)
(14.2 \pm 8.9%) and conservativ	AND COLO				_		-		5 (9.4)	9 (15.3)
higher in surgical patients (43.9	25.90								9 (17.0)	11 (18.6)
and conservatively treated (34	23 %		- Percutaneo	ous MV-repair					1 (1.9)	2 (3.4)
groups showed similar survival			- Surgical tro	atmont					9 (17.0)	18 (30.5)
survived. The same trend was			Surgical tre						11 (20.0)	14 (22.7)
controlling for risk factors, bot	0%		- Conservativ	e treatment					11 (20.8)	14 (23.7)
to 0.78 n = 0.006) and surgi			500	1		1	1		20 (52.0)	20 (44.1)
concorvatively treated aroun $\frac{1}{2}$		U	500	1000		1500	2000	-	14 (20.4)	19 (32.2)
				Days					6 (11 3)	8 (13.6)
2.10, $p = 0.430$).								91 (65.5)	38 (71.7)	35 (59.3)
		e ha ha an an ta	and the second second second	MD .	1. 21.	IV		32 (23.0)	9 (17.0)	16 (27.1)
CONCLUSIONS Despite a high	her log EuroSCOR	E, high-surgica	at-risk patients with symp	tomatic severe MR treated	1 with	Etiology		52 (25.5)	5 (11.6)	
transcatheter MV repair show s	imilar survival rat	es compared v	with surgically treated pa	tients, with both displayin	ng	FMR		107 (77.0)	31 (58.5)	48 (81.3)
survival benefit compared with	conservative trea	tment. (J Am	Coll Cardiol Intv 2014;7:8	75-81) © 2014 by the Am	erican	DMR		25 (18.0)	17 (32.1)	4 (6.8)
College of Cardiology Foundation	on.				_	Mixed		7 (5 0)	5 (9.4)	49(119)

Cases Series

"..The present study describes the results of PMVR with the MitraClip device in **an extreme setting of patients with severe FMR and CHF** non-responders to optimal medical therapy and CRT.."

Percutaneous mitral valve repair: the last chance for symptoms improvement in

CARDIOLOGY

advanced refractory chronic heart failure ?

Alessandra Berardini, MD¹, PhD, Elena Biagini, MD², PhD, Francesco Saia, MD, PhD³, Davide Stolfo, MD⁴, Mario Previtali, MD⁵, Francesco Grigioni, MD⁶, Bruno Pinamonti, MD⁷, Gabriele Crimi, MD⁸, Alessandro Salvi, MD⁹, Maurizio Ferrario, MD¹⁰, Antonio De Luca, MD¹¹, Fabrizio Gazzoli, MD¹², Maria Letizia Bacchi Reggiani, MSc¹³, Claudia Raineri, MD¹⁴, Gianfranco Sinagra, MD¹⁵, Claudio Rapezzi, MD, PhD¹⁶

".. In extreme risk HF patients with FMR, PMVR improved symptoms and reduced re-hospitalization and pro-BNP levels despite the lack of LV reverse remodeling.."

The MitraClip System: an Italian Consensus Statement

Journal of Cardiovascular Medicine, 15 (3) p.173-188, 2014

Cardiologists (ANMCO) Italian Society of Interventional Cardiology (GISE). Italian Society for <u>Cardiac</u> Surgery (SICCH). Italian Society of Arrhythmias and

Electrophysiology (AIAC)

Transcatheter Treatment of Chronic Mitral Regurgitation with the MitraClip System: an Italian Consensus Statement

Journal of Cardiovascular Medicine, 15 (3) p.173-188, 2014

«...Le recenti Linee Guida della Società Europea di Cardiologia e della Associazione Europea di Chirurgia Cardio-Toracica, **considerano la MitraClip come una potenziale opzione terapeutica in pazienti selezionati affetti da rigurgito mitralico severo sintomatico con alto rischio chirurgico** o inoperabili⁵²...»

«...Il processo di selezione per l'impianto di MitraClip deve essere riservato ad un centro.. che includa i cardiologi interventisti, i cardiochirurghi, gli ecocardiografisti, gli anestesisti, e gli specialisti dello scompenso cardiaco (Heart Team)...»

«...In candidati selezionati, la procedura MitraClip appare associata ad un miglioramento della qualità di vita, ad una possibilità di rimodellamento inverso del ventricolo sinistro, ad un aumento della capacità funzionale, e a una riduzione di ospedalizzazioni. Pertanto, la terapia MitraClip può giocare un ruolo significativo nel campo della terapia non farmacologica dello scompenso cardiaco e della malattia della valvola mitrale...»

52 Vahanian A, Alfieri O, Andreotti F, et al. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2012; 33:2451–2496.

 25 Ottobre 2013: officializzazione del FDA Approval per MitraClip con lancio immediato negli US per tutti I pazienti con rigurgito mitralico degenerativo giudicati ad alto rischio chirurgico¹

Approvazione Sistema Sanitario Canadese

 30 Aprile 2014: officializzazione dell'Approval del Sistema Sanitario Canadese per MitraClip per tutti i pazienti DMR ad alto rischio chirurgico dopo valutazione di un team di cardiologi e di un cardiochirurgo³

^{1,3} Comunicati stampa disponibili sul sito www.abbott.com.² E-print al link: <u>http://www.medengine.com/Redeem/5232C1401E8C98DE</u>

MitraClip Design Evolution

Suture Based Designs

Clip Based Designs

MitraClip Clinical Experience

ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure

The ESC represents 51 countries with a population of 900 million, and there are at least 15 million patients with HF.

The prevalence of HF is between 2 and 3% and rises sharply at 75 years of age, so the prevalence in 70- to 80-year-old people is between 10 and 20%.

