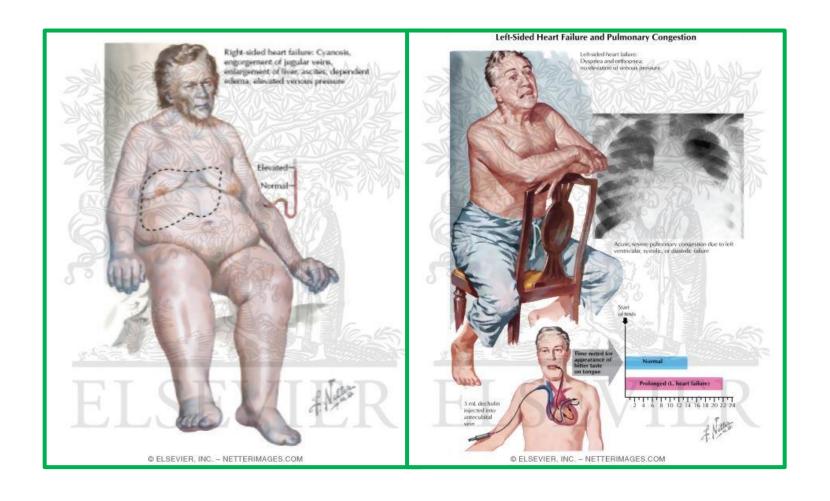
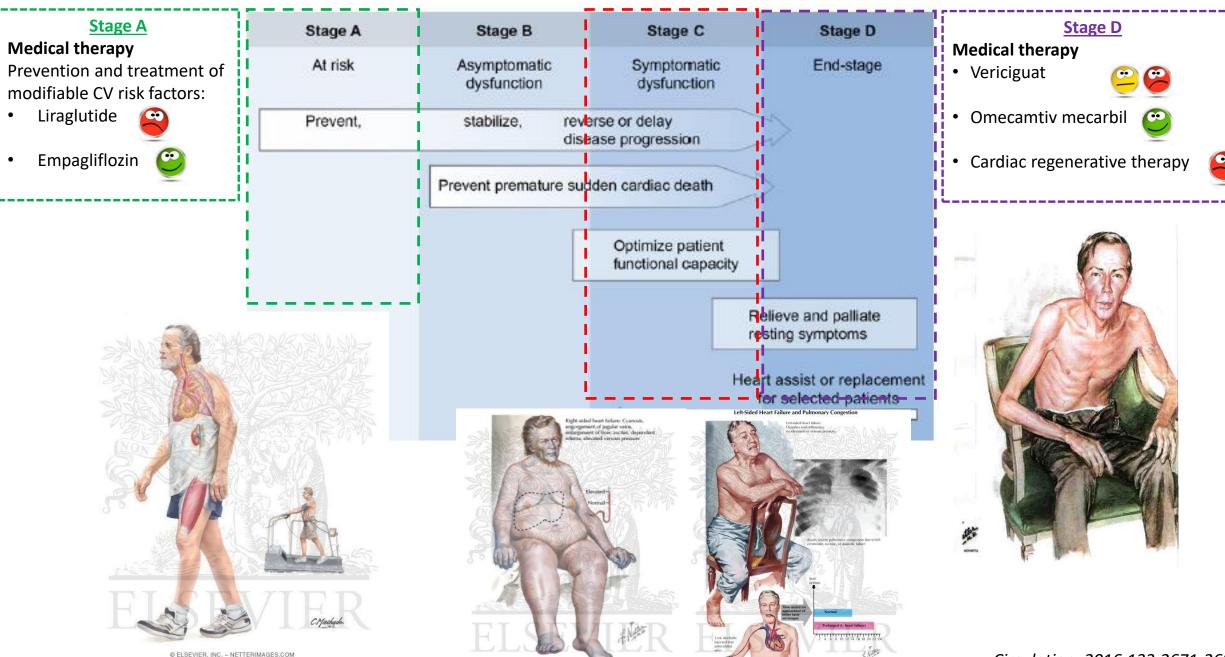


X CONGRESSO NAZIONALE ECOCARDIOCHIRURGIA 2018

da un'idea di Antonio Mantero MILANO, 9-11 APRILE 2018


INSUFFICIENZA CARDIACA


La terapia medica

Dr. Francesco Antonini-Canterin (Motta di Livenza)

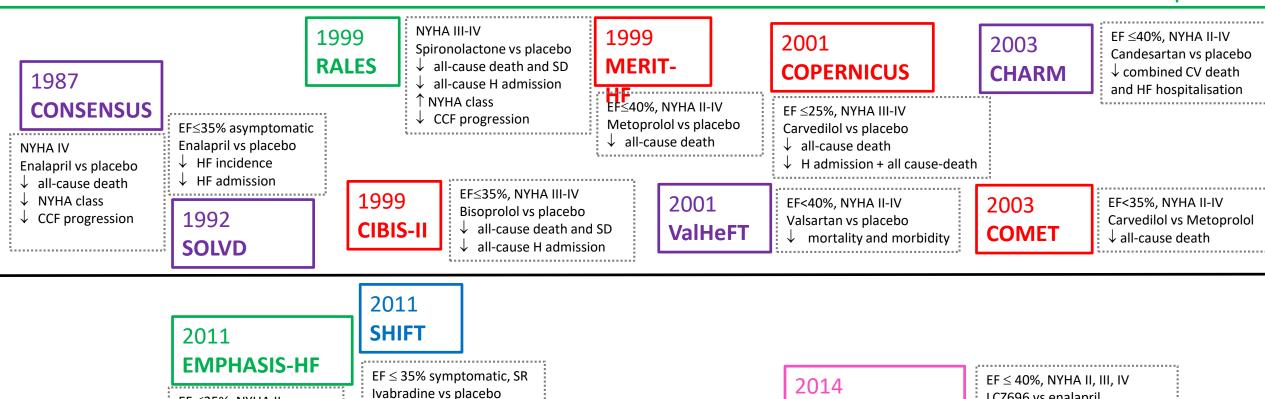
Dr.ssa Rita Belfiore (Pordenone)

Heart Failure: "...a clinical syndrome characterised by symptoms (such as breathlessness, ankle swelling and fatigue) and signs (eg, raised jugular venous pressure, pulmonary crackles and pheripheral oedema) caused by structural or functional cardiac abnormalities that lead to elevated intracardiac pressure or a reduced cardiac output at rest or during stress..."

Type of HF		HFrEF	HFmrEF	HFpEF
		Symptoms ± Signs*	Symptoms ± Signs*	Symptoms ± Signs*
¥	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%
CRITER	3	_	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).

Neurohormonal antagonists are the backbone of MT:

ACE-i


ARB

MRA

BB

ARNI

INSUFFICIENZA CARDIACA: la terapia medica



Timeline of principal RCT for MT in HFrEF

↓ HF admission

EF ≤35%, NYHA II

Eplerenone vs placebo ↓ all-cause and CV death

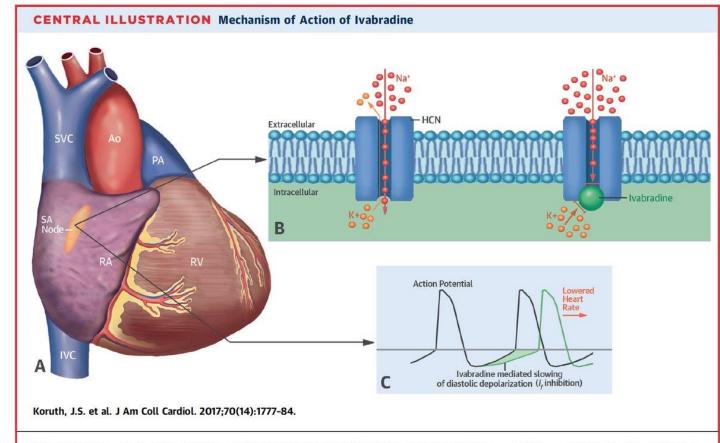
LCZ696 vs enalapril

↓ CV death and HF admission

PARADIGM-HF

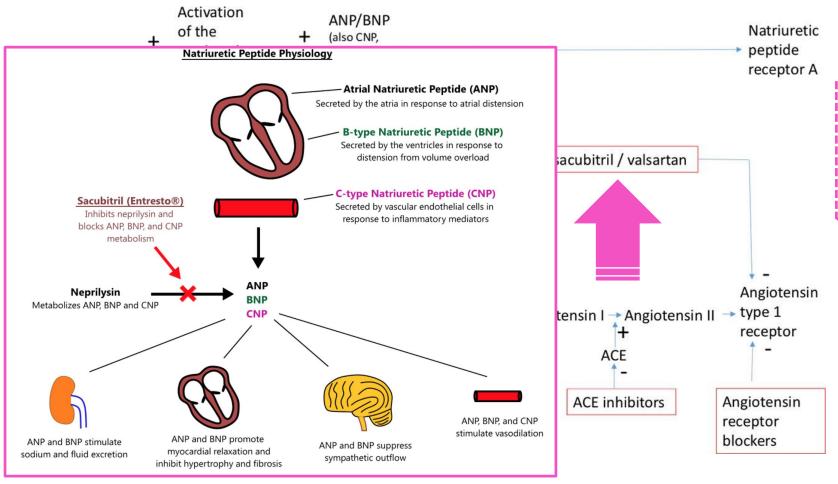
Setting: HF with EF≤35%, SR, HR ≥70bpm

Ivabradine vs Placebo


Median f-up: 22.9 months

I endpoint: composite of CV death and HF admission

II endopint: composite of CV death and HF admission in pts at ≥50% of the target daily dose of a BB


Results:

- Significant ↓ in I endpoint, mainly due to reductions in HF admissions
- In those on ≥50% target daily BB dose → ↓HF admissions, but NO ↓ in mortality

(A) Ivabradine's primary mechanism of action on cardiac tissue is on the sinoatrial (SA) node, which occupies a predominantly subepicardial position at the junction of the superior vena cava (SVC) and the right atrium (RA). (B) In the sinoatrial node, ivabradine blocks the intracellular aspect of the hyperpolarization-activated cyclic nucleotide-gated (HCN) transmembrane channel, which is responsible for the transport of sodium (Na⁺) and potassium (K⁺) ions across the cell membrane, in the open state. This results in inhibition of the inward funny current (I_f), which is specifically activated at hyperpolarized membrane potentials. (C) By selectively inhibiting I_f , there is a reduction in the slope of diastolic depolarization of the pacemaker action potential (shaded region) and an increase in the duration of diastole, without altering other phases of the action potential. This results in heart rate reduction. Ao = aorta; IVC = inferior vena cava; PA = pulmonary artery; RV = right ventricle.

PATHWAYS BLOCKED BY ACE-I, ARB AND NEPRILYSIN INHIBITORS

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

D IN 1812 SEPTEMBER 11, 2014

OL. 371 NO. 11

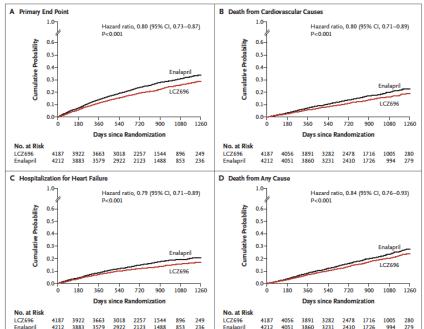
Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure

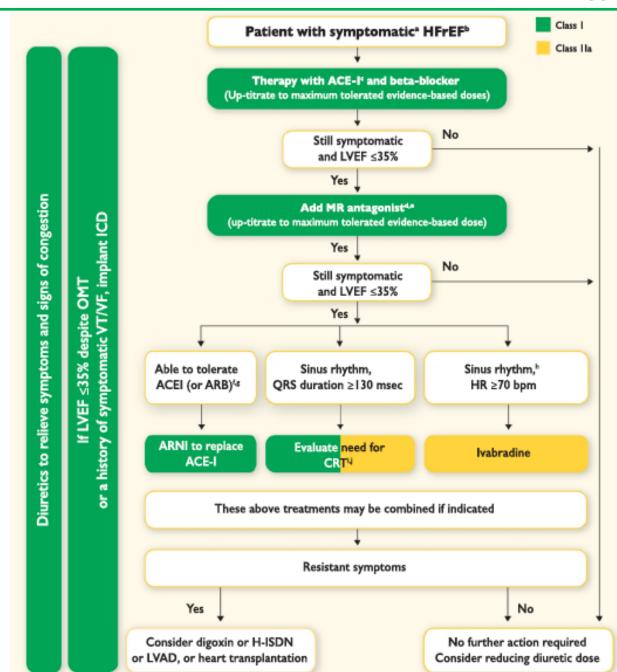
Setting: EF≤40% (than≤35%), NYHA II-IV, pts taking ACE-i/ARB for at least 4 weeks

Median f-up: 27 months

endpoint: composite of CV death and HF

admission




Figure 2. Kaplan-Meier Curves for Key Study Outcomes, According to Study Group

Shown are estimates of the probability of the primary composite end point (death from cardiovascular causes or first hospitalization for heart failure) (Panel A), death from cardiovascular causes (Panel B), first hospitalization for heart failure (Panel C), and death from any cause (Panel D).

HFrEF

Symptoms ± Signs^a

LVEF <40%

Beta-blockers

	Starting dose	Target dose
Beta Blockers		
Bisoprolol	1.25 mg once daily	10 mg once daily
Carvedilol	3.125 mg twice daily	25 mg twice daily for weight <85 kg and 50 mg twice daily for weight ≥85 kg
Metoprolol succinate	12.5-25 mg/d	200 mg daily

- Adjust dose every 2 weeks (longer time in frail pts; rapid titration in stable pts)
- Achive target dose in 3-6 months

MRA

Aldosterone antagonists							
Eplerenone	25 mg daily	50 mg daily					
Spironolactone	12.5-25 mg daily	25-50 mg daily					

- Not necessary to achieve target or maximally tolerated doses of other drugs before adding MRA
- Contraindicated if eGFR<30mL/min or K+>5mEq/dL

ACE-i/ARB

ACEI		
Captopril	6.25 mg 3× daily	50 mg 3x daily
Enalapril	2.5 mg twice daily	10-20 mg twice daily
Lisinopril	2.5-5 mg daily	20-40 mg daily
Ramipril	1.25 mg daily	10 mg daily
\RB		
Candesartan	4-8 mg daily	32 mg daily
Losartan	25-50 mg daily	150 mg daily
Valsartan	40 mg twice daily	160 mg twice daily

- Adjust dose every 2 weeks (rapid titration in stable pts)
- Achive target dose in 3-6 months
- Assess renal function and K⁺ within 1-2 weeks of the initiation or dose increase of ACE-I/ARB

IVABRADINE

Ivabradine						
Ivabradine	2.5-5 mg twice daily	Titrate to heart rate 50-60 bpm. Maximum dose 7.5 mg twice daily				

Agents that affect renal function:

If decrease in eGFR of >30% or hyperkalemia are noted → reduce dose

- Adjust dose every 2 weeks in pts with HR≥70bpm already on target or maximally tolerated dose of BB
- NO Hypotension

ARNI

ARNI

Sacubitril/valsartan 24/26 mg-49/51 mg 97/103 mg twice daily twice daily

Who should be prescribed?

- Outpatient with EF≤ 40%; NYHA II-IV; SBP>100mmHg
- NOT recommended in pt with severe liver disease

How should be prescribed?

- 36 hrs wash out from ACE-i before starting ARNI
- Standard dose: 49/51 mf bid; lower dose in certain groups

How should be titrated?

- Increase dose every 2-4 weeks to allow time for adjustment to the vasodilatory effects
- Monitor BP, renal function, K+; BNP monitoring is useless

Population	Initial Dose
Moderate- or high-dose ACEI Equivalent of enalapril ≥10 mg twice daily	49/51 mg twice daily
Moderate- or high-dose ARB Equivalent of valsartan ≥80 mg twice daily	
Low dose ACEI Equivalent of <10 mg of enalapril twice daily	24/26 mg twice daily
Low dose ARB Equivalent of valsartan ≤80 mg twice daily	
ACEI/ARB naïve*	
Severe renal impairment† (eGFR <30 mL/min/1.73 m²)	
Moderate hepatic impairment (Child-Pugh Class B)	
Elderly (age ≥75 years)	

- No targeted therapy \rightarrow we treat all HFrEF pts with the same therapies, titrated to the same target doses
- Existing therapies are underutilised in the real word:

	MADIT ('96)		MADIT	· II ('02)	CAT ((02)	AMIOVIRT	('03)	DEI	FINI	TE ('04)	SC	D-HeFT ('05	5)	nd HF
	OMT	ICD	OMT	ICD	OMT	ICD	Amio	ICD	OM	1T	ICD	Amio	Placebo	ICD	-
ACE-i ARB	51%	57%	68%	72%	98.1%	94%	81%	90%	87.3 8.7		83.8% 13.5%	85%	88%	86%	-
BB	14%	31%	70%	70%	3.7%	4%	50%	53%	84.3	3%	85.6%	72%	79%	82%	
MRA							19%	20%				28%	33%	32%	
n Mortality rate, % (n) Mortality and/or HF- hospitalization rate, % (n) HR Mortality HR Mortality and/or	50% (152) 1.76 (1.54–1.98)			5) 29% (1	2.41 (2.13	36% -2.68) 1.91	2 581 (233) 16% (93 (286) 31% (18 (1.74–2.08) 1.29 (1.0 (1.15–1.39) 1.04 (0.8	2) 35	7 % (44) % (91)		lower HR -lower DB -more sigi MRA : -lower eG -Hyperkal	P ns of con FR	gestion	ı	_
HF-hospitalization											2)Clinic		rtia		

HOW TO GUIDE OMT

- Remember: target doses are associated with better outcomes; titration should occur even if the pt appears
 "stable"
- When facing clinical scenarios that limit the ability to use target doses of all relevant therapies, a top priority should be to address the factor(s) limiting OMT:
 - Worsenig renal function or hyperkalaemia > discontinue aldosterone antagonist if eGFR<30mL/min or K+>5.5mEq/dL
 - **Symptomatic hypotension** \rightarrow first exclude other causes of low BP (overdiuresis, autonomic dysfunction, other vasoactive medications, ...), than use best-tolerated dose of MT
 - Scarce tolerability and side effects -> start at low doses and up-titrate according to tolerability. Pt education and frequent contact will shorten the time to achieve optimal therapy

Type of HF		HFrEF	HFmrEF	HFpEF
	ı	Symptoms ± Signs*	Symptoms ± Signs*	Symptoms ± Signs*
ĕ	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%
CRITERIA	3	_	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).

The pathophysiology underlying HFpEF is heterogeneous, and it is associated with different phenotypes including concomitant cardiovascular diseases (e.g. AF, arterial hypertension, CAD, pulmonary hypertension) and non-cardiovascular diseases (diabetes, CKD, anaemia, iron deficiency, COPD and obesity). Unfortunately, at present, no treatment has yet been shown, convincingly, to reduce morbidity or mortality in these patients.

2003 **CHARM**

EF>40%, NYHA II-IV
Candesartan vs placebo
NO ↓ combined CV death +HF hospitalisation

2008 I-PRESERVE

EF at leat 45%, NYHA II-IV Irbesrtant vs placebo NO ↓ all cause death and H admission

2014 **TOPCAT**

EF ≥35%

Spironolactone vs placebo

NO ↓ combined CV death + HF hospitalisation + aborted CA

2017 **EDIFY**

EF≥45%, NYHA II-II, SR, HR ≥70bpm Ivabradine vs placebo NO ↓ E/E' o NTproBNP, no ↑ 6MWT 2019... **PARAGON-HF**

EF≥45%, NYHA II-IV ARNI vs Valsartan alone

Timeline of principal RCT for MT in HFpEF

....and SO???...

• Symptoms improvement remains a primary goal of treament in these pts

• Proper treatment of comorbidities is strongly advised

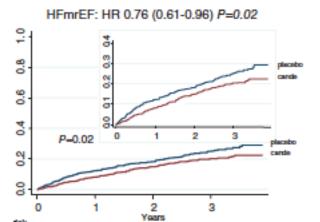
WHAT ABOUT THIS THERAPEUTIC FRUSTRATION?

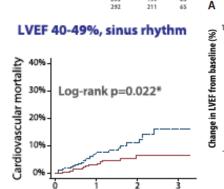
For many years it was thought that HFpEF was predominantly, if not completely, driven by abnormalities in diastolic function ...but there is more...

- Chronotropic incompetence
- Abnormal oxygen extraction by peripheral skeletal musculature
- Inflammatory and cytokine effects on myocytes, cardiac interstitium and myocardial microvasculature

LVEF 40-49%, sinus rhythm

Log-rank p=0.042*


Eur Heart J (2016) **37**, 2129-2200


Type of HF		HFrEF	HFmrEF	HFpEF
	ı	Symptoms ± Signs*	Symptoms ± Signs*	Symptoms ± Signs*
ĕ	2	LVEF <40%	LVEF 40-49%	LVEF ≥50%
CRITERIA	3	_	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).	Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction (for details see Section 4.3.2).

- More than 20% of pts with HF
- Metanalysis (EHJ 2018): BB ↑LVEF and prognosis in pts with EF 40-49% and SR


European Journal of Heart Failure (2018) doi:10.1002/ejhf.1149

Years

European Heart Journal (2018) 39, 26-35

Beta-blockers

ACUTE HEART FAILURE

	CONGESTION (-)	CONGESTION (+) Pulmonary congestion, orthopnoea/paroxismal, nocturnal dyspnoea, peripheral (bilateral) oedema, jugular venous dilatation, congested hepatomegaly, gut congestion, ascites, hepatojugular reflux
HYPOPERFUSION (-)	WARM-DRY	WARM-WET
HYPOPERFUSION (+) Cold sweaty extremities, Oliguria, Mental confusion, Dizziness, Narrow pulse pressure	COLD-DRY	COLD-WET

Hypoperfusion is not synonymous with hypotension, but often hypoperfusion is accompanied by hypotension.

ACUTE HEART FAILURE

DIURETICS

Intravenous loop diuretics are recommended for all patients with AHF admitted with signs/symptoms of fluid overload to improve symptoms. It is recommended to regularly monitor symptoms, urine output, renal function and electrolytes during use of i.w. diuretics.

In patients with new-onset AHF or those with chronic, decompensated HF not receiving oral diuretics the initial recommended dose should be 20–40 mg i.v. furosemide (or equivalent); for those on chronic diuretic therapy, initial i.v. dose should be at least equivalent to oral dose.

It is recommended to give diuretics either as intermittent boluses or as a continuous infusion, and the dose and duration should be adjusted according to patients' symptoms and clinical status.

Combination of loop diuretic with either thiazide-type diuretic or spironolactone may be considered in patients with resistant oedema or insufficient symptomatic response.

- NO difference between bolus and continuous infusion (DOSE study)
- If resistance > sequential nephron blockade
 (+ thiazides or thiazide-like diuretics)
- Ultrafiltration: still debated
 - CARESS-HF study: no benefit
 - AVOID-HF trial: ↓ in HF admission

INOTROPES

	Bolus	Infusion
Dobutamine ^a	No	2-20 µg/kg/mln (beta+)
Dopamine	No	3–5 µg/kg/mln; Inotropic (beta+)
		>5 μg/kg/min: (beta+), vasopressor (alpha+)
Milrinone ^{xb}	25–75 μg/kg over 10–20 mln	0.375–0.75 μg/kg/mln
Enoximone	0.5–1.0 mg/kg over 5–10 min	5–20 μg/kg/mln
Levosimendana	12 μg/kg over 10 min (optional)	0.1 μg/kg/min, which can be decreased to 0.05 or increased to 0.2 μg/kg/min
Norepinephrine	No	0.2–1.0 μg/kg/min
Epinephrine	Bolus: I mg can be given I.v. during resuscitation, repeated every 3–5 min	0.05–0.5 μg/kg/min

- Except for digoxin (IIbB), they should be only used in pts with CS (SBP<90 mmHg)
- When inotropes are needed→STOP BB

VASODILATORS

Vasodilator	Dosing
Nitroglycerine	Start with 10–20 µg/min, increase up to 200 µg/min
Isosorbide dinitrate	Start with 1 mg/h, increase up to 10 mg/h
Nitroprusside	Start with 0.3 µg/kg/min and increase up to 5 µg/kg/min
Nesiritide ^a	Bolus 2 µg/kg + infusion 0.01 µg/kg/min

• Relief symptoms in pts with SBP≥ 100mmHg

2017 **ATHENA-HF**

AHF regardless of EF

100 mg **spironolactone** vs 25 mg placebo or for 96 hrs I endpoint: change in NTproBNP from baseline to 96 hrs II endpoint: clinical congestion score, dyspnea assessment, net urine output, and net weight change NO improvement

2016 **ATOMIC-AHF**

Omecamtiv mecarbil 48hrs infusion vs placebo in AHF pts with EF≤40% Increase systolic ejection time

Improve dyspnea ionly n the high-dose group

2008 **HORIZON** **Istaroxime** infusion in AHF vs placebo

- ↓ PCWP, HR, ESV, EDV; ↑ IC, SBP
- \downarrow E/E', DT E wave

2017 **BLAST-HF**

Phase IIb study
3 different dosage of **TRV027** vs placebo
NO improvement of clinical status at 30 days

2017 **TRUE-AHF**

Continuous iv infusion of **Ularitide** (natruretic peptide) vs placebo for 48 hrs did not affect CV death

Ongoing **RELAX-AHF2**

Serelaxin infusion in addiction to ST in pts with AHF will be able to reduce CV death at 180 days and worsening HF through day 5?

TAKE HOME MESSAGES


CHF:

- Neurohormonal antagonists are known since the dawn of time and they proved to be effective, but we have to use them well →don't forget to titrate!!!!
- With the publication of PARADIGM-HF trial we may be entering a new era of treatment for HFrEF

AHF:

- At present NO treatment for AHF has proved to increase outcome
- New molecules are currenlty under investigation; numerous studies have failed, but we hope for the future...

Thank you for your attention!

